An Object Detection Model for Power Lines with Occlusions Combining CNN and Transformer

变压器 计算机科学 目标检测 人工智能 计算机视觉 模式识别(心理学) 电子工程 工程类 电气工程 电压
作者
Weicheng Shi,Xiaoqin Lyu,Lei Han
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2025.3529073
摘要

The application of computer vision in power line inspection has made some progress. However, the complexity of power line inspection images also brings some difficulties and challenges to this field. Aiming at the problems of separated features in power line occluded object detection, which may lead to missed detection and lower detection accuracy, this paper proposes a new power line detection model based on You Only Look Once X-s (YOLO X-s). Firstly, based on the Vision Transformer (ViT), a novel self-attention Transformer structure (SATS) is designed and integrated into the YOLO X-s structure, which enables the model to establish correlations with segmented features and capture global features, and enhance the detection performance of the occluded objects. Secondly, a Feature Connected-Feature Pyramid Network (FC-FPN) is proposed to replace the Feature Pyramid Network (FPN) and Path Aggregation Network (PAN), which can implement repeated interaction and fusion of both the global features and the local features. Thirdly, a Selective Kernel Network (SKNet) is selected to adaptively select two kinds of features with the same dimensions in the channel dimension through channel attention weights and finally output to the head structure. The results show that the average detection accuracy of the detection model proposed in this paper is 6.88% higher than the YOLO X-s model, reaching 82.00%, and the detection speed reaches 37.2 frames per second (FPS). The code is available at https://github.com/fancy7/ODNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气西牛完成签到,获得积分10
2秒前
3秒前
传奇3应助虚幻的青槐采纳,获得10
4秒前
5秒前
科研通AI5应助超级铃铛采纳,获得10
6秒前
111发布了新的文献求助10
8秒前
橙子慢慢来完成签到,获得积分10
8秒前
9秒前
完美世界应助xu采纳,获得10
11秒前
露露发布了新的文献求助10
11秒前
13秒前
大个应助风中亦玉采纳,获得10
13秒前
禾薇完成签到,获得积分10
15秒前
huahuahua发布了新的文献求助30
16秒前
16秒前
伊丽莎白完成签到,获得积分10
17秒前
研友_VZG7GZ应助李同学采纳,获得10
18秒前
wpie99发布了新的文献求助30
23秒前
wangmou完成签到,获得积分10
23秒前
科研通AI5应助江谷林采纳,获得10
27秒前
27秒前
Hello应助禾薇采纳,获得10
28秒前
科研通AI5应助踏实的芸遥采纳,获得10
29秒前
科研通AI5应助蒹葭采纳,获得10
30秒前
李同学发布了新的文献求助10
31秒前
31秒前
杭永程完成签到 ,获得积分10
34秒前
34秒前
博弈春秋完成签到,获得积分10
37秒前
大林发布了新的文献求助10
37秒前
38秒前
40秒前
Crystal完成签到 ,获得积分10
40秒前
海阔天空完成签到,获得积分0
40秒前
江谷林完成签到,获得积分10
42秒前
42秒前
42秒前
42秒前
李同学完成签到,获得积分10
42秒前
在水一方应助竹心蜓采纳,获得10
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423