Convex Optimization for Trajectory Generation: A Tutorial on Generating Dynamically Feasible Trajectories Reliably and Efficiently

轨迹优化 弹道 计算机科学 数学优化 凸优化 航天器 最优化问题 运动学 正多边形 最优控制 算法 航空航天工程 数学 工程类 天文 物理 经典力学 几何学
作者
Danylo Malyuta,Taylor P. Reynolds,Michael Szmuk,Thomas Lew,Riccardo Bonalli,Marco Pavone,Behçet Açıkmeşe
出处
期刊:IEEE Control Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 40-113 被引量:102
标识
DOI:10.1109/mcs.2022.3187542
摘要

Reliable and efficient trajectory generation methods are a fundamental need for autonomous dynamical systems. The goal of this article is to provide a comprehensive tutorial of three major convex optimization-based trajectory generation methods: lossless convexification (LCvx) and two sequential convex programming algorithms, successive convexification (SCvx) and guaranteed sequential trajectory optimization (GuSTO). Trajectory generation is defined as the computation of a dynamically feasible state and control signal that satisfies a set of constraints while optimizing key mission objectives. The trajectory generation problem is almost always nonconvex, which typically means that it is difficult to solve efficiently and reliably onboard an autonomous vehicle. The three algorithms that we discuss use problem reformulation and a systematic algorithmic strategy to nonetheless solve nonconvex trajectory generation tasks using a convex optimizer. The theoretical guarantees and computational speed offered by convex optimization have made the algorithms popular in both research and industry circles. The growing list of applications includes rocket landing, spacecraft hypersonic reentry, spacecraft rendezvous and docking, aerial motion planning for fixed-wing and quadrotor vehicles, robot motion planning, and more. Among these applications are high-profile rocket flights conducted by organizations such as NASA, Masten Space Systems, SpaceX, and Blue Origin. This article equips the reader with the tools and understanding necessary to work with each algorithm and know their advantages and limitations. An open source tool called the SCP Toolbox accompanies the article and provides a practical implementation of every numerical example. By the end of the article, the reader will not only be ready to use the lossless convexification and sequential convex programming algorithms, but also to extend them and to contribute to their many exciting modern applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Atopos完成签到,获得积分10
刚刚
进取拼搏完成签到,获得积分10
刚刚
刚刚
吴炜华完成签到,获得积分20
1秒前
VPN不好用发布了新的文献求助10
2秒前
yang发布了新的文献求助10
2秒前
3秒前
Coco发布了新的文献求助10
3秒前
hhc完成签到,获得积分10
5秒前
han发布了新的文献求助10
5秒前
木木发布了新的文献求助10
6秒前
Hello应助一念来回采纳,获得10
6秒前
hzhang01完成签到,获得积分20
7秒前
深情安青应助azhou176采纳,获得10
8秒前
jade完成签到,获得积分10
9秒前
恋晴完成签到 ,获得积分10
12秒前
雪白红紫完成签到,获得积分20
12秒前
13秒前
充电宝应助奶味蓝采纳,获得10
13秒前
盆盆酱完成签到,获得积分10
13秒前
顺心凡灵完成签到,获得积分10
13秒前
李健的粉丝团团长应助BKP采纳,获得10
15秒前
15秒前
16秒前
Oi小鬼完成签到 ,获得积分10
16秒前
18秒前
sutharsons应助科研通管家采纳,获得30
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
斯文败类应助万物安生采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
sutharsons应助科研通管家采纳,获得30
20秒前
加菲丰丰应助科研通管家采纳,获得10
20秒前
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
20秒前
烟花应助YYJ采纳,获得10
20秒前
一念来回发布了新的文献求助10
23秒前
lpp发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522957
求助须知:如何正确求助?哪些是违规求助? 3103935
关于积分的说明 9268001
捐赠科研通 2800675
什么是DOI,文献DOI怎么找? 1537078
邀请新用户注册赠送积分活动 715371
科研通“疑难数据库(出版商)”最低求助积分说明 708759