Synergistic effect of adsorption and photocatalysis of BiOBr/lignin-biochar composites with oxygen vacancies under visible light irradiation

生物炭 光催化 木质素 吸附 可见光谱 材料科学 氧气 光化学 化学工程 带隙 吸光度 辐照 化学 热解 催化作用 有机化学 物理 工程类 核物理学 光电子学 色谱法
作者
Qiang Yang,Xiang Li,Qingwen Tian,Aixiang Pan,Xingjian Liu,Hang Yin,Yingqiao Shi,Guigan Fang
出处
期刊:Journal of Industrial and Engineering Chemistry [Elsevier]
卷期号:117: 117-129 被引量:39
标识
DOI:10.1016/j.jiec.2022.09.044
摘要

Effective utilization solar energy through photocatalysis is an ideal way to solve environmental problems and achieve sustainable development. Herein, a novel BiOBr/Lignin-Biochar photocatalyst has been successfully synthesized by a simple hydrothermal method. The number of oxygen vacancies of BiOBr increased after C doping, which improves visible-light absorbance, reduces the recombination of photo-generated carriers and promotes O2 activation to produce O2−. UV–vis DRS result demonstrated that the visible-light absorption capacity of BiOBr improved significantly with the addition of lignin. Compared with BiOBr, the adsorption and photocatalytic ability of BiOBr/Lignin-Biochar composites were greatly enhanced due to enriched oxygen vacancies and the congenerous effect between BiOBr and lignin-biochar. The RhB removal with pure BiOBr and BiOBr/Lignin-Biochar under visible-light irradiation at 60 min was 54.5% and 99.2%, respectively, owing to the interface interaction between BiOBr and lignin-biochar promoted the separation between electron and holes and the enrichment of RhB around the photocatalysts. Notably, the bandgap of BiOBr/Lignin-Biochar composites decreased from 2.65 eV to 2.56 eV after C doping, useful for visible-light-driven photocatalysis. The superoxide radical anions (O2−) were the main active species, as demonstrated by free radical capture experiments and ESR characterization results. Hence, the present work provides new insights into constructing cost-effective, high-efficiency composite materials for environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyy发布了新的文献求助10
刚刚
稳重无剑完成签到,获得积分10
1秒前
wuha完成签到,获得积分10
1秒前
1秒前
欢喜从霜完成签到,获得积分10
2秒前
Orange应助LiShin采纳,获得10
2秒前
2秒前
欣慰友梅完成签到,获得积分10
2秒前
3秒前
llllllll发布了新的文献求助10
3秒前
3秒前
3秒前
CC完成签到,获得积分10
3秒前
wwuu发布了新的文献求助10
4秒前
shenyanlei发布了新的文献求助10
4秒前
一汁蟹发布了新的文献求助20
5秒前
大个应助绿麦盲区采纳,获得10
5秒前
雨齐完成签到,获得积分10
5秒前
茶艺如何发布了新的文献求助10
5秒前
5秒前
kk完成签到,获得积分10
6秒前
6秒前
123发布了新的文献求助10
6秒前
yyyy完成签到,获得积分10
7秒前
好好学习天天向上完成签到,获得积分10
7秒前
欣慰友梅发布了新的文献求助10
7秒前
7秒前
8秒前
Akim应助易伊澤采纳,获得10
8秒前
格局太小完成签到,获得积分10
8秒前
8秒前
尔云完成签到,获得积分10
9秒前
传奇3应助GGZ采纳,获得10
9秒前
我瞎蒙发布了新的文献求助10
9秒前
llllllll完成签到,获得积分10
10秒前
香蕉觅云应助shenyanlei采纳,获得10
10秒前
kdkfjaljk完成签到 ,获得积分10
10秒前
10秒前
CipherSage应助芒果采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762