High-resolution computed tomography diagnosis of pneumoconiosis complicated with pulmonary tuberculosis based on cascading deep supervision U-Net

尘肺病 医学 接收机工作特性 高分辨率计算机断层扫描 试验装置 肺结核 分割 放射科 计算机断层摄影术 人工智能 肺结核 计算机科学 内科学 病理
作者
Maoneng Hu,Zichen Wang,Xinxin Hu,Yi Wang,Guoliang Wang,Huanhuan Ding,Mingmin Bian
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107151-107151 被引量:6
标识
DOI:10.1016/j.cmpb.2022.107151
摘要

Pulmonary tuberculosis can promote pneumoconiosis deterioration, leading to higher mortality. This study aims to explore the diagnostic value of the cascading deep supervision U-Net (CSNet) model in pneumoconiosis complicated with pulmonary tuberculosis. A total of 162 patients with pneumoconiosis treated in our hospital were collected as the research objects. Patients were randomly divided into a training set (n = 113) and a test set (n = 49) in proportion (7:3). Based on the high-resolution computed tomography (HRCT), the traditional U-Net, supervision U-Net (SNet), and CSNet prediction models were constructed. Dice similarity coefficients, precision, recall, volumetric overlap error, and relative volume difference were used to evaluate the segmentation model. The area under the receiver operating characteristic curve (AUC) value represents the prediction efficiency of the model. There were no statistically significant differences in gender, age, number of positive patients, and dust contact time between patients in the training set and test set (P > 0.05). The segmentation results of CSNet are better than the traditional U-Net model and the SNet model. The AUC value of the CSNet model was 0.947 (95% CI: 0.900∼0.994), which was higher than the traditional U-Net model. The CSNet based on chest HRCT proposed in this study is superior to the traditional U-Net segmentation method in segmenting pneumoconiosis complicated with pulmonary tuberculosis. It has good prediction efficiency and can provide more clinical diagnostic value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐美女发布了新的文献求助10
1秒前
ccmocker完成签到,获得积分10
1秒前
1秒前
zjky6r完成签到 ,获得积分20
1秒前
小艾完成签到,获得积分10
3秒前
yuki完成签到 ,获得积分10
3秒前
妮妮发布了新的文献求助10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
如梦完成签到,获得积分10
4秒前
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
6秒前
zoe关注了科研通微信公众号
7秒前
完美世界应助墨客采纳,获得10
9秒前
苗条馒头完成签到,获得积分10
10秒前
12秒前
ymly25发布了新的文献求助10
13秒前
15秒前
快乐美女完成签到,获得积分10
16秒前
cyanpomelo完成签到 ,获得积分10
17秒前
17秒前
fancccc发布了新的文献求助10
18秒前
pjmwj完成签到,获得积分10
18秒前
激流勇进wb完成签到 ,获得积分10
19秒前
xuan发布了新的文献求助10
20秒前
20秒前
21秒前
Bryce完成签到 ,获得积分10
21秒前
21秒前
pjmwj发布了新的文献求助10
22秒前
华西招生版完成签到,获得积分10
22秒前
科研通AI5应助创出宇宙采纳,获得10
23秒前
吉里巴完成签到,获得积分20
23秒前
24秒前
miketyson完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3678374
求助须知:如何正确求助?哪些是违规求助? 3231799
关于积分的说明 9799638
捐赠科研通 2942969
什么是DOI,文献DOI怎么找? 1613629
邀请新用户注册赠送积分活动 761715
科研通“疑难数据库(出版商)”最低求助积分说明 737048