The Use of Machine Learning in MicroRNA Diagnostics: Current Perspectives

医学 癌症 胰腺癌 小RNA 卵巢癌 结直肠癌 疾病 乳腺癌 内科学 肺癌 肿瘤科 生物信息学 生物 生物化学 基因
作者
Chrysanthos D. Christou,A. Mitsas,Ioannis Vlachavas,Georgios Tsoulfas
出处
期刊:MicroRNA 卷期号:11 (3): 175-184
标识
DOI:10.2174/2211536611666220818145553
摘要

: MicroRNAs constitute small non-coding RNAs that play a pivotal role in regulating the translation and degradation of mRNA and have been associated with many diseases. Artificial Intelligence (AI) is an evolving cluster of interrelated fields, with machine learning (ML) standing out as one of the most prominent AI fields, with a plethora of applications in almost every aspect of human life. ML could be defined as computer algorithms that learn from past data to predict future data. This review comprehensively reviews the current applications of microRNA-based ML models in healthcare. The majority of the identified studies investigated the role of microRNA-based ML models in the management of cancer and specifically gastric cancer (maximum diagnostic accuracy (Accmax): 94%), pancreatic cancer (Accmax: 93%), colorectal cancer (Accmax: 100%), breast cancer (Accmax: 97%), ovarian cancer, neck squamous cell carcinoma, liver cancer, lung cancer (Accmax: 100%), and melanoma. Except for cancer, microRNA-based ML models have been applied for a plethora of other diseases, including ulcerative colitis (Accmax: 92.8%), endometriosis, gestational diabetes mellitus (Accmax: 86%), hearing loss, ischemic stroke, coronary heart disease (Accmax: 96%), tuberculosis, pulmonary arterial hypertension (Accmax: 83%), dementia (Accmax: 82.9%), major cardiovascular events in end-stage renal disease patients, and alcohol dependence (Accmax: 79.1%). Our findings suggest that the development of microRNA-based ML models could be used to enhance the diagnostic accuracy of a plethora of diseases while at the same time substituting or minimizing the use of more invasive diagnostic means (such as endoscopy). Even not as fast as anticipated, AI will eventually infiltrate the entire healthcare industry. AI is the key to a clinical practice where medicine's inherent complexity is embraced. Therefore, AI will become a reality that physicians should conform with to avoid becoming obsolete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岚叶完成签到,获得积分10
4秒前
Ava应助苗啊苗采纳,获得10
11秒前
12秒前
筱筱完成签到,获得积分10
13秒前
Zyl发布了新的文献求助10
14秒前
卷卷发布了新的文献求助10
17秒前
光芒万张在河之周完成签到,获得积分10
18秒前
岚叶发布了新的文献求助10
18秒前
科研通AI2S应助miao采纳,获得10
19秒前
19秒前
充电宝应助ying采纳,获得10
21秒前
Mineme发布了新的文献求助30
23秒前
木子发布了新的文献求助10
24秒前
24秒前
27秒前
zjj发布了新的文献求助10
30秒前
苗啊苗发布了新的文献求助10
32秒前
33秒前
权志龙发布了新的文献求助10
34秒前
MingqingFang发布了新的文献求助10
36秒前
36秒前
尼尼发布了新的文献求助10
37秒前
39秒前
苗啊苗完成签到,获得积分10
40秒前
风华发布了新的文献求助30
40秒前
科研通AI2S应助懵懂的灭男采纳,获得10
42秒前
兔子发布了新的文献求助10
42秒前
铜锣烧发布了新的文献求助20
44秒前
香蕉觅云应助西贝采纳,获得10
44秒前
45秒前
百年孤独发布了新的文献求助10
45秒前
犹豫的世倌完成签到,获得积分10
45秒前
45秒前
46秒前
oceanao应助可爱野狼采纳,获得10
46秒前
情怀应助kirren采纳,获得10
47秒前
完美世界应助蒙恩Maria采纳,获得10
47秒前
bkagyin应助Zyl采纳,获得10
48秒前
象牙板完成签到,获得积分10
49秒前
正直白梅发布了新的文献求助10
51秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161053
求助须知:如何正确求助?哪些是违规求助? 2812453
关于积分的说明 7895410
捐赠科研通 2471252
什么是DOI,文献DOI怎么找? 1315934
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094