AFNFS: Adaptive fuzzy neighborhood-based feature selection with adaptive synthetic over-sampling for imbalanced data

自适应采样 数学 选择(遗传算法) 特征(语言学) 合成数据 数据挖掘 采样(信号处理) 模糊逻辑 人工智能 模式识别(心理学) 特征选择 机器学习 计算机科学 统计 计算机视觉 哲学 滤波器(信号处理) 语言学 蒙特卡罗方法
作者
Lin Sun,Mengmeng Li,Weiping Ding,En Zhang,Xiaoxia Mu,Jiucheng Xu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:612: 724-744 被引量:30
标识
DOI:10.1016/j.ins.2022.08.118
摘要

• The closeness is defined according to the variance distance between samples from the minority classes. This pair set of neighboring samples in the minority classes is further given, and synthetic samples based on the random interpolation are expressed. Thus, an improved adaptive synthetic over-sampling model is constructed to obtain this balanced decision system consisting of those synthetic and original samples. • An adaptive fuzzy neighborhood radius is defined according to the data margins of all homogeneous and heterogeneous samples, and the similarity relationship based on the adaptive fuzzy neighborhood radius and its similarity matrix is proposed. The adaptive fuzzy neighborhood granule, adaptive fuzzy membership degree, and upper and lower approximations are constructed to design a new FNRS model. • By combining the roughness of the evaluation boundary region with the adaptive fuzzy neighborhood entropy, adaptive fuzzy neighborhood joint entropy with roughness in fuzzy neighborhood decision systems is constructed for evaluating the uncertainty. A heuristic adaptive fuzzy neighborhood-based feature selection algorithm with the tolerance parameter is proposed for imbalanced data classification. The classification efficiency of majority classes for imbalanced data is so concerned in real-world applications. Almost fuzzy neighborhood radius still needs to be manually set and many entropy measures may ignore the boundary region of data, these limitations will result in the poor classification effect. To address these limitations, this paper designs a novel adaptive fuzzy neighborhood-based feature selection method for imbalanced data with adaptive synthetic over-sampling. First, the closeness is defined according to the variance distance between the samples of the minority class, the pair set of neighboring samples is designed, and then an improved adaptive synthetic over-sampling model is presented for constructing balanced decision systems consisting of the synthetic samples and original samples. Second, an adaptive fuzzy neighborhood radius is developed when using the data margins of all homogeneous and heterogeneous samples. Then the adaptive fuzzy neighborhood granule and upper and lower approximations are defined to construct a new FNRS model. Thus, approximate accuracy and roughness are presented to measure the uncertainty from the fuzzy and rough perspectives for imbalanced data. Third, by combining the roughness with adaptive fuzzy neighborhood entropy, adaptive fuzzy neighborhood joint entropy is constructed to evaluate the uncertainty in fuzzy neighborhood decision systems from two viewpoints of algebra and information. Then the reduced set and the significance of the feature are further developed. Finally, this improved adaptive synthetic over-sampling algorithm is designed to aim to build this balanced decision system, and an adaptive fuzzy neighborhood-based feature selection algorithm with the tolerance parameter is developed to achieve an optimal feature subset. Experiments on 26 imbalanced datasets demonstrate that the constructed algorithms compared to the other related algorithms are effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
刚刚
hhh发布了新的文献求助10
1秒前
秋秋完成签到,获得积分10
1秒前
1秒前
kirren完成签到,获得积分10
2秒前
盛夏发布了新的文献求助10
2秒前
追寻的秋玲完成签到,获得积分10
2秒前
可乐不了完成签到 ,获得积分10
2秒前
爱丽丝应助美满的小甜瓜采纳,获得10
3秒前
文二目分完成签到 ,获得积分10
3秒前
Xumeiling完成签到,获得积分10
4秒前
qqqqgc完成签到,获得积分20
4秒前
5秒前
5秒前
Owen应助Su采纳,获得10
5秒前
慕青应助蓝色雪狐采纳,获得10
5秒前
cookie完成签到,获得积分10
5秒前
fosca完成签到,获得积分10
6秒前
CyrusSo524应助以恒之心采纳,获得10
6秒前
6秒前
是江江哥啊完成签到,获得积分10
6秒前
Daisy应助zwy采纳,获得10
6秒前
7秒前
7秒前
cookie发布了新的文献求助10
8秒前
加美希尔完成签到,获得积分10
8秒前
精明的甜瓜应助郭先森采纳,获得10
8秒前
风中的安双完成签到,获得积分10
9秒前
9秒前
冷傲迎梦完成签到,获得积分20
11秒前
11秒前
vinni发布了新的文献求助10
11秒前
仙人殊恍惚应助研友_ZGR70n采纳,获得10
11秒前
李明月完成签到,获得积分10
11秒前
zhongxuejie完成签到,获得积分10
11秒前
yanziwu94完成签到,获得积分10
11秒前
xh发布了新的文献求助10
11秒前
11秒前
王加通完成签到,获得积分10
11秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051