Individual and team profiling to support theory of mind in artificial social intelligence

仿形(计算机编程) 感知 团队构成 计算机科学 任务(项目管理) 认知 社会智力 人工智能 背景(考古学) 知识管理 心理学 应用心理学 社会心理学 操作系统 古生物学 管理 神经科学 经济 生物
作者
Rhyse Bendell,Jessica Williams,Stephen M. Fiore,Florian Jentsch
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-63122-8
摘要

Abstract We describe an approach aimed at helping artificial intelligence develop theory of mind of their human teammates to support team interactions. We show how this can be supported through the provision of quantifiable, machine-readable, a priori information about the human team members to an agent. We first show how our profiling approach can capture individual team member characteristic profiles that can be constructed from sparse data and provided to agents to support the development of artificial theory of mind. We then show how it captures features of team composition that may influence team performance. We document this through an experiment examining factors influencing the performance of ad-hoc teams executing a complex team coordination task when paired with an artificial social intelligence (ASI) teammate. We report the relationship between the individual and team characteristics and measures related to task performance and self-reported perceptions of the ASI. The results show that individual and emergent team profiles were able to characterize features of the team that predicted behavior and explain differences in perceptions of ASI. Further, the features of these profiles may interact differently when teams work with human versus ASI advisors. Most strikingly, our analyses showed that ASI advisors had a strong positive impact on low potential teams such that they improved the performance of those teams across mission outcome measures. We discuss these findings in the context of developing intelligent technologies capable of social cognition and engage in collaborative behaviors that improve team effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕燕其羽完成签到 ,获得积分10
1秒前
1秒前
1秒前
清秀代亦发布了新的文献求助30
1秒前
2秒前
一木完成签到,获得积分10
2秒前
泡沫发布了新的文献求助10
2秒前
lalala发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
小庄发布了新的文献求助10
4秒前
随心流浪发布了新的文献求助10
5秒前
6秒前
浅尝离白应助溺水的蛙采纳,获得100
6秒前
7秒前
szczęśliwie发布了新的文献求助10
7秒前
7秒前
我不爱池鱼应助小半采纳,获得10
8秒前
斯文败类应助赤墨采纳,获得10
8秒前
乐乐应助孤独的AD钙采纳,获得10
8秒前
echo完成签到,获得积分10
8秒前
9秒前
bolunxier完成签到,获得积分10
10秒前
10秒前
10秒前
李昂岚发布了新的文献求助10
11秒前
麦子发布了新的文献求助10
11秒前
张张发布了新的文献求助10
11秒前
12秒前
by完成签到,获得积分10
12秒前
在水一方应助seven采纳,获得10
12秒前
澡雪完成签到,获得积分10
14秒前
14秒前
快乐邮递员完成签到,获得积分10
14秒前
15秒前
16秒前
ding完成签到,获得积分10
16秒前
Chenhao_Wang完成签到 ,获得积分10
16秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648