Dynamic prediction of time to wound healing at routine wound care visits

医学 伤口护理 伤口愈合 队列 重症监护医学 外科 内科学
作者
Doranne Thomassen,Stella Felicia Amesz,Niels P. Stol,Saskia le Cessie,Ewout W. Steyerberg
出处
期刊:Advances in wound care [Mary Ann Liebert]
标识
DOI:10.1089/wound.2024.0069
摘要

Objective Having a wound decreases patients' quality of life and brings uncertainty, especially if the wound does not show a healing tendency. The objective of this study was to develop and validate a model to dynamically predict time to wound healing at subsequent routine wound care visits. Approach A dynamic prediction model was developed in a cohort of wounds treated by nurse practitioners between 2017-2022. Potential predictors were selected based on literature, expert opinion, and availability in the routine care setting. To assess performance for future wound care visits, the model was validated in a new cohort of wounds visited in early 2023. Reporting followed TRIPOD guidelines. Results We analyzed data from 92,098 visits, corresponding to 14,248 wounds and 7,221 patients. At external validation, discriminative performance of our developed model was comparable to internal validation (c-statistic = 0.70 [95% CI 0.69, 0.71]) and the model remained well-calibrated. Strong predictors were wound-level characteristics and indicators of the healing process so far (e.g., wound surface area). Innovation Going beyond previous prediction studies in the field, the developed model dynamically predicts the remaining time to wound healing for many wound types at subsequent wound care visits, in line with the dynamic nature of wound care. In addition, the model was externally validated and showed stable performance. Conclusion: The developed model can potentially contribute to patient satisfaction and reduce uncertainty around wound healing times when implemented in practice. When the predicted time of wound healing remains high, practitioners can consider adapting their wound management.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医生科学家完成签到 ,获得积分10
刚刚
派大星完成签到 ,获得积分10
刚刚
支初晴完成签到 ,获得积分10
2秒前
5秒前
锋洋之恋完成签到,获得积分10
6秒前
充电宝应助高金龙采纳,获得10
6秒前
8秒前
科目三应助飘逸的三毒采纳,获得10
8秒前
9秒前
10秒前
美丽越彬发布了新的文献求助10
12秒前
三谋青年发布了新的文献求助10
12秒前
13秒前
隐形曼青应助sudajun采纳,获得10
14秒前
聪明念真发布了新的文献求助10
16秒前
大杨完成签到,获得积分10
16秒前
鳗鱼如松完成签到,获得积分10
17秒前
华仔应助浮一白采纳,获得10
18秒前
繁荣的迎松完成签到,获得积分10
18秒前
hui发布了新的文献求助10
19秒前
清秀谷蓝完成签到,获得积分20
19秒前
美丽越彬完成签到,获得积分10
22秒前
23秒前
大个应助Morning采纳,获得10
24秒前
打打应助二槑采纳,获得10
27秒前
28秒前
28秒前
Layace完成签到 ,获得积分10
29秒前
29秒前
33秒前
gzsy完成签到 ,获得积分10
33秒前
sudajun发布了新的文献求助10
34秒前
34秒前
英姑应助Panl采纳,获得10
35秒前
35秒前
.X.发布了新的文献求助10
36秒前
清秀谷蓝发布了新的文献求助20
36秒前
38秒前
凡启发布了新的文献求助10
39秒前
俭朴夜雪发布了新的文献求助10
43秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387810
求助须知:如何正确求助?哪些是违规求助? 3000370
关于积分的说明 8791128
捐赠科研通 2686408
什么是DOI,文献DOI怎么找? 1471612
科研通“疑难数据库(出版商)”最低求助积分说明 680410
邀请新用户注册赠送积分活动 673174