STARNet: An Efficient Spatiotemporal Feature Sharing Reconstructing Network for Automatic Modulation Classification

计算机科学 特征(语言学) 人工智能 调制(音乐) 模式识别(心理学) 特征提取 语言学 美学 哲学
作者
Xiangli Zhang,Zishuo Wang,Xuesong Wang,Tianze Luo,Yong Xiao,Bin Fang,Fei Xiao,Dapeng Luo
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 13300-13312 被引量:2
标识
DOI:10.1109/twc.2024.3400754
摘要

Automatic Modulation Classification (AMC) is a crucial task in the field of wireless communication, allowing for the identification of the modulation scheme of a received radio signal without prior knowledge of the communication system. Recently, AMC approaches based on Deep Learning (DL) have achieved outstanding results. However, the majority of current DL-based AMC methods face challenges in achieving high recognition accuracy while remaining computationally efficient. Some researchers have designed autoencoder-based models to generate low-dimensional temporal feature embeddings of the radio signal, thereby reducing the number of model parameters while maintaining high performance in recognizing modulation formats. However, when further improving AMC performance via learning low-dimensional spatial-temporal feature representations, traditional autoencoder models require both a convolutional decoder and an LSTM decoder to reconstruct temporal and spatial features separately, which unavoidably raises the model parameters. In this paper, we propose a spatiotemporal feature sharing reconstructing network (STARNet) to simultaneously extract low-dimensional spatial and temporal feature representations of radio signals using a single autoencoder structure, thereby reducing the number of model parameters and improving AMC performance. Additionally, we construct a Hybrid Attentive Ghost (HA-Ghost) to automatically extract discriminative radio signal spatial information according to signal reconstruction performance. Extensive experiments on benchmark datasets demonstrate that the proposed STARNet achieves an average modulation classification accuracy of 63.64%, outperforming previous state-of-the-art models. Despite extracting more types of features, STARNet has only 14,860 parameters, which is smaller than existing spatiotemporal autoencoder-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助东方一斩采纳,获得10
2秒前
wcwzcz完成签到,获得积分10
2秒前
12345发布了新的文献求助10
2秒前
LXY_YYY完成签到,获得积分10
3秒前
科研通AI5应助zhizhi采纳,获得10
4秒前
待放光的吖啶酯完成签到,获得积分10
4秒前
张子烜完成签到,获得积分10
6秒前
姗姗完成签到,获得积分10
6秒前
wxf777发布了新的文献求助30
7秒前
cc完成签到,获得积分10
8秒前
brodie完成签到,获得积分10
9秒前
sfsfes完成签到 ,获得积分10
9秒前
原小爽完成签到 ,获得积分20
10秒前
11秒前
小马甲应助四十四次日落采纳,获得10
12秒前
达叔发布了新的文献求助10
13秒前
圣诞节完成签到,获得积分10
14秒前
123learner完成签到,获得积分10
14秒前
Asteria发布了新的文献求助10
15秒前
16秒前
轻轻完成签到 ,获得积分10
16秒前
felix发布了新的文献求助10
16秒前
泥花完成签到,获得积分10
17秒前
梅赛德斯完成签到,获得积分10
17秒前
123learner发布了新的文献求助10
17秒前
17秒前
王SQ完成签到,获得积分10
19秒前
SAOKA发布了新的文献求助10
20秒前
勤奋的猪完成签到,获得积分10
20秒前
源缘完成签到 ,获得积分10
20秒前
22秒前
22秒前
传奇3应助宁静采纳,获得10
22秒前
2568269431完成签到 ,获得积分10
24秒前
24秒前
动听的夏天完成签到,获得积分10
24秒前
小青虫完成签到,获得积分10
26秒前
代包子完成签到 ,获得积分20
26秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774229
求助须知:如何正确求助?哪些是违规求助? 3319961
关于积分的说明 10197633
捐赠科研通 3034461
什么是DOI,文献DOI怎么找? 1665041
邀请新用户注册赠送积分活动 796603
科研通“疑难数据库(出版商)”最低求助积分说明 757510