临近预报
卫星
对流
气象学
计算机科学
地质学
遥感
地理
航空航天工程
工程类
作者
Da Fan,Steven J. Greybush,Eugene E. Clothiaux,David John Gagne
标识
DOI:10.1175/aies-d-23-0098.1
摘要
Abstract Convective initiation (CI) nowcasting remains a challenging problem for both numerical weather prediction models and existing nowcasting algorithms. In this study, an object-based probabilistic deep learning model is developed to predict CI based on multichannel infrared GOES-16 satellite observations. The data come from patches surrounding potential CI events identified in Multi-Radar Multi-Sensor Doppler weather radar products over the Great Plains region from June and July 2020 and June 2021. An objective radar-based approach is used to identify these events. The deep learning model significantly outperforms the classical logistic model at lead times up to 1 hour, especially on the false alarm ratio. Through case studies, the deep learning model exhibits dependence on the characteristics of clouds and moisture at multiple altitudes. Model explanation further reveals that the contribution of features to model predictions is significantly dependent on the baseline, a reference point against which the prediction is compared. Under a moist baseline, moisture gradients in the lower and middle troposphere contribute most to correct CI forecasts. In contrast, under clear-sky baselines, correct CI forecasts are dominated by cloud-top features, including cloud-top glaciation, height, and cloud coverage. Our study demonstrates the advantage of using different baselines in further understanding model behavior and gaining scientific insights.
科研通智能强力驱动
Strongly Powered by AbleSci AI