Multi-resource interleaving for task scheduling in cloud-edge system by deep reinforcement learning

计算机科学 强化学习 交错 云计算 调度(生产过程) 分布式计算 边缘设备 任务(项目管理) GSM演进的增强数据速率 人工智能 操作系统 数学优化 系统工程 数学 工程类
作者
Xinglong Pei,Penghao Sun,Yuxiang Hu,Dan Li,Lihua Tian,Ziyong Li
出处
期刊:Future Generation Computer Systems [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.future.2024.06.033
摘要

Collaborative cloud–edge computing has been systematically developed to balance the efficiency and cost of computing tasks for many emerging technologies. To improve the overall performance of cloud–edge system, existing works have made progress in task scheduling by dynamically distributing the tasks with different latency thresholds to edge and cloud nodes. However, the relationship of multi-resource queueing among different tasks within a node is not well studied, which leaves the merit of optimizing the multi-resource queueing unexplored. To fill this gap and improve the efficiency of cloud–edge system, we propose DeepMIC, a deep reinforcement learning (DRL)-based multi-resource interleaving scheme for task scheduling in cloud–edge system. First, we formulate a multi-resource queueing model aiming at minimizing the weighted-sum delay of the pending tasks. The proposed model jointly considers the requests for computation, caching, and forwarding resources within a node based on the network information collected through Software-Defined Networking (SDN) and the management framework of Mobile Edge Computing (MEC). Then, we customize a DRL algorithm to ensure a timely solution of the model, which caters to the high throughput of tasks. Finally, we demonstrate that through the flexible scheduling of the tasks, DeepMIC reduces the average task response time and achieves better resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
猪猪hero应助李锐采纳,获得10
刚刚
猪猪hero应助李锐采纳,获得10
刚刚
CAOHOU应助李锐采纳,获得10
1秒前
南山无梅落应助李锐采纳,获得10
1秒前
pluto应助李锐采纳,获得10
1秒前
dypdyp应助毅诚菌采纳,获得10
1秒前
Magali应助李锐采纳,获得30
1秒前
种田发布了新的文献求助10
1秒前
归尘应助李锐采纳,获得10
1秒前
归尘应助李锐采纳,获得10
1秒前
CAOHOU应助李锐采纳,获得10
1秒前
3秒前
11完成签到 ,获得积分10
4秒前
星期五发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
猪猪hero应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
共享精神应助受伤雨南采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
南山无梅落应助李锐采纳,获得10
7秒前
ED应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
蔓越莓蛋糕应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
8秒前
Strongly完成签到,获得积分10
8秒前
念姬发布了新的文献求助10
9秒前
10秒前
清茶发布了新的文献求助10
10秒前
10秒前
12秒前
Tumbleweed668发布了新的文献求助10
14秒前
pipi发布了新的文献求助10
14秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962893
求助须知:如何正确求助?哪些是违规求助? 3508839
关于积分的说明 11143458
捐赠科研通 3241757
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579