Multi-resource interleaving for task scheduling in cloud-edge system by deep reinforcement learning

计算机科学 强化学习 交错 云计算 调度(生产过程) 分布式计算 边缘设备 任务(项目管理) GSM演进的增强数据速率 人工智能 操作系统 数学优化 系统工程 数学 工程类
作者
Xinglong Pei,Penghao Sun,Yuxiang Hu,Dan Li,Lihua Tian,Ziyong Li
出处
期刊:Future Generation Computer Systems [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.future.2024.06.033
摘要

Collaborative cloud–edge computing has been systematically developed to balance the efficiency and cost of computing tasks for many emerging technologies. To improve the overall performance of cloud–edge system, existing works have made progress in task scheduling by dynamically distributing the tasks with different latency thresholds to edge and cloud nodes. However, the relationship of multi-resource queueing among different tasks within a node is not well studied, which leaves the merit of optimizing the multi-resource queueing unexplored. To fill this gap and improve the efficiency of cloud–edge system, we propose DeepMIC, a deep reinforcement learning (DRL)-based multi-resource interleaving scheme for task scheduling in cloud–edge system. First, we formulate a multi-resource queueing model aiming at minimizing the weighted-sum delay of the pending tasks. The proposed model jointly considers the requests for computation, caching, and forwarding resources within a node based on the network information collected through Software-Defined Networking (SDN) and the management framework of Mobile Edge Computing (MEC). Then, we customize a DRL algorithm to ensure a timely solution of the model, which caters to the high throughput of tasks. Finally, we demonstrate that through the flexible scheduling of the tasks, DeepMIC reduces the average task response time and achieves better resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠觅珍完成签到,获得积分10
刚刚
刚刚
FashionBoy应助PaoPao采纳,获得10
1秒前
Cc发布了新的文献求助10
1秒前
自然怀寒完成签到,获得积分10
1秒前
SWL发布了新的文献求助20
2秒前
天真白天完成签到,获得积分10
2秒前
一年5篇发布了新的文献求助10
2秒前
小帆同学应助zsy采纳,获得10
3秒前
GaoYuanLong发布了新的文献求助50
3秒前
4秒前
yizhiyeqiu完成签到,获得积分10
4秒前
SY完成签到,获得积分10
5秒前
5秒前
汉堡包应助wuhuhu采纳,获得10
5秒前
魏不不发布了新的文献求助10
5秒前
5秒前
5秒前
HHHSean完成签到,获得积分10
6秒前
6秒前
6秒前
STDRM发布了新的文献求助10
6秒前
6秒前
科研通AI5应助帆蚌侠采纳,获得10
6秒前
6秒前
科研通AI6应助55采纳,获得10
7秒前
7秒前
天天快乐应助城东城西采纳,获得10
7秒前
李健的小迷弟应助李牧采纳,获得10
7秒前
8秒前
MJK完成签到,获得积分10
9秒前
科研通AI6应助Chow采纳,获得10
9秒前
Chem发布了新的文献求助10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
malenia完成签到,获得积分10
11秒前
1111发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646