清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-feature Fusion Network on Gray Scale Ultrasonography: Effective Differentiation of Adenolymphoma and Pleomorphic Adenoma

特征(语言学) 超声科 多形性腺瘤 灰色(单位) 人工智能 计算机科学 腺淋巴瘤 灰度 病理 放射科 医学 像素 语言学 腮腺 唾液腺 哲学
作者
Yi Mao,Li-Ping Jiang,Jing-Ling Wang,Yu-Hong Diao,Fang-Qun Chen,Wei-Ping Zhang,Li Chen,Zhi-Xing Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (11): 4396-4407 被引量:2
标识
DOI:10.1016/j.acra.2024.05.023
摘要

to develop a deep learning radiomics graph network (DLRN) that integrates deep learning features extracted from gray scale ultrasonography, radiomics features and clinical features, for distinguishing parotid pleomorphic adenoma (PA) from adenolymphoma (AL) MATERIALS AND METHODS: A total of 287 patients (162 in training cohort, 70 in internal validation cohort and 55 in external validation cohort) from two centers with histologically confirmed PA or AL were enrolled. Deep transfer learning features and radiomics features extracted from gray scale ultrasound images were input to machine learning classifiers including logistic regression (LR), support vector machines (SVM), KNN, RandomForest (RF), ExtraTrees, XGBoost, LightGBM, and MLP to construct deep transfer learning radiomics (DTL) models and Rad models respectively. Deep learning radiomics (DLR) models were constructed by integrating the two features and DLR signatures were generated. Clinical features were further combined with the signatures to develop a DLRN model. The performance of these models was evaluated using receiver operating characteristic (ROC) curve analysis, calibration, decision curve analysis (DCA), and the Hosmer-Lemeshow test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuju完成签到,获得积分10
6秒前
Gydl完成签到,获得积分10
14秒前
简单完成签到 ,获得积分10
19秒前
31秒前
研友_nxw2xL完成签到,获得积分10
36秒前
muriel完成签到,获得积分0
42秒前
dream完成签到 ,获得积分10
55秒前
juan完成签到 ,获得积分10
57秒前
1分钟前
lingling完成签到 ,获得积分10
1分钟前
1分钟前
yeye发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
追风完成签到,获得积分10
1分钟前
yeye完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
rayjin完成签到,获得积分10
2分钟前
苗苗完成签到 ,获得积分10
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
4分钟前
四氧化三铁完成签到,获得积分10
4分钟前
4分钟前
4分钟前
PeterLin完成签到,获得积分10
4分钟前
鲤鱼不言发布了新的文献求助10
4分钟前
5分钟前
虚心的飞鸟完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
不安的晓灵完成签到 ,获得积分10
6分钟前
紫熊完成签到,获得积分10
7分钟前
7分钟前
Nancy0818完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
zzz发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596614
求助须知:如何正确求助?哪些是违规求助? 4008465
关于积分的说明 12409239
捐赠科研通 3687520
什么是DOI,文献DOI怎么找? 2032461
邀请新用户注册赠送积分活动 1065692
科研通“疑难数据库(出版商)”最低求助积分说明 950996