Multi-feature Fusion Network on Gray Scale Ultrasonography: Effective Differentiation of Adenolymphoma and Pleomorphic Adenoma

特征(语言学) 超声科 多形性腺瘤 灰色(单位) 人工智能 计算机科学 腺淋巴瘤 灰度 病理 放射科 医学 像素 语言学 腮腺 唾液腺 哲学
作者
Yi Mao,Li-Ping Jiang,Jing-Ling Wang,Yu-Hong Diao,Fang-Qun Chen,Wei-Ping Zhang,Li Chen,Zhi-Xing Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (11): 4396-4407 被引量:3
标识
DOI:10.1016/j.acra.2024.05.023
摘要

to develop a deep learning radiomics graph network (DLRN) that integrates deep learning features extracted from gray scale ultrasonography, radiomics features and clinical features, for distinguishing parotid pleomorphic adenoma (PA) from adenolymphoma (AL) MATERIALS AND METHODS: A total of 287 patients (162 in training cohort, 70 in internal validation cohort and 55 in external validation cohort) from two centers with histologically confirmed PA or AL were enrolled. Deep transfer learning features and radiomics features extracted from gray scale ultrasound images were input to machine learning classifiers including logistic regression (LR), support vector machines (SVM), KNN, RandomForest (RF), ExtraTrees, XGBoost, LightGBM, and MLP to construct deep transfer learning radiomics (DTL) models and Rad models respectively. Deep learning radiomics (DLR) models were constructed by integrating the two features and DLR signatures were generated. Clinical features were further combined with the signatures to develop a DLRN model. The performance of these models was evaluated using receiver operating characteristic (ROC) curve analysis, calibration, decision curve analysis (DCA), and the Hosmer-Lemeshow test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张玮发布了新的文献求助10
2秒前
ri_290完成签到,获得积分10
4秒前
shiori发布了新的文献求助10
4秒前
科研通AI6应助Echo采纳,获得10
4秒前
11秒前
打打应助朴素的松采纳,获得10
11秒前
伯言发布了新的文献求助10
14秒前
NexusExplorer应助Lialilico采纳,获得10
15秒前
风格完成签到,获得积分10
16秒前
kingwhitewing发布了新的文献求助10
17秒前
18秒前
Aron发布了新的文献求助10
18秒前
23秒前
23秒前
烟花应助yang采纳,获得10
24秒前
Owen应助inter采纳,获得10
24秒前
lynn发布了新的文献求助10
28秒前
FLyu发布了新的文献求助10
28秒前
29秒前
小蘑菇应助土豆土豆采纳,获得10
29秒前
niNe3YUE应助研友_Ljqal8采纳,获得10
30秒前
长情的海亦完成签到,获得积分10
32秒前
12发布了新的文献求助100
33秒前
34秒前
shiori完成签到,获得积分10
34秒前
隐形曼青应助Jodie采纳,获得10
36秒前
38秒前
郭6666发布了新的文献求助10
40秒前
FLyu完成签到,获得积分10
40秒前
耶椰发布了新的文献求助10
42秒前
12完成签到,获得积分10
42秒前
欣喜的元绿完成签到,获得积分10
47秒前
47秒前
49秒前
51秒前
55秒前
55秒前
huangqian发布了新的文献求助30
55秒前
郭6666完成签到,获得积分10
56秒前
可爱的函函应助lynn采纳,获得10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550