Hydrogen Embrittlement as a Conspicuous Material Challenge─Comprehensive Review and Future Directions

氢脆 氢气储存 氢经济 脆化 纳米技术 化学 氢燃料 工程物理 材料科学 冶金 物理 有机化学
作者
Haiyang Yu,A. Díaz,Xu Lu,Binhan Sun,Yu Ding,Motomichi Koyama,Jianying He,Xiao Zhou,Abdelali Oudriss,X. Feaugas,Zhiliang Zhang
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:124 (10): 6271-6392 被引量:2
标识
DOI:10.1021/acs.chemrev.3c00624
摘要

Hydrogen is considered a clean and efficient energy carrier crucial for shaping the net-zero future. Large-scale production, transportation, storage, and use of green hydrogen are expected to be undertaken in the coming decades. As the smallest element in the universe, however, hydrogen can adsorb on, diffuse into, and interact with many metallic materials, degrading their mechanical properties. This multifaceted phenomenon is generically categorized as hydrogen embrittlement (HE). HE is one of the most complex material problems that arises as an outcome of the intricate interplay across specific spatial and temporal scales between the mechanical driving force and the material resistance fingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in the field as well as our collective understanding, this Review is devoted to treating HE as a whole and providing a constructive and systematic discussion on hydrogen entry, diffusion, trapping, hydrogen-microstructure interaction mechanisms, and consequences of HE in steels, nickel alloys, and aluminum alloys used for energy transport and storage. HE in emerging material systems, such as high entropy alloys and additively manufactured materials, is also discussed. Priority has been particularly given to these less understood aspects. Combining perspectives of materials chemistry, materials science, mechanics, and artificial intelligence, this Review aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts of various paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wjwer完成签到,获得积分10
刚刚
CCD发布了新的文献求助10
刚刚
苏木235完成签到 ,获得积分10
2秒前
Duummy完成签到,获得积分10
2秒前
卿卿发布了新的文献求助10
3秒前
4秒前
飞兔完成签到,获得积分10
4秒前
Catalysis123发布了新的文献求助10
4秒前
6秒前
科研通AI2S应助熊博士采纳,获得10
6秒前
Aiden完成签到,获得积分10
6秒前
山复尔尔完成签到 ,获得积分10
7秒前
CCD完成签到,获得积分10
8秒前
Phi.Wang发布了新的文献求助10
8秒前
9秒前
赘婿应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得30
10秒前
1257应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
美君发布了新的文献求助10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
11秒前
樱桃猴子应助卿卿采纳,获得10
12秒前
爱吃土豆完成签到 ,获得积分10
13秒前
zerox完成签到,获得积分10
13秒前
13秒前
14秒前
李小小发布了新的文献求助10
14秒前
nini发布了新的文献求助10
14秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141883
求助须知:如何正确求助?哪些是违规求助? 2792846
关于积分的说明 7804392
捐赠科研通 2449137
什么是DOI,文献DOI怎么找? 1303086
科研通“疑难数据库(出版商)”最低求助积分说明 626769
版权声明 601265