Microbial diagnostics in periodontal diseases

医学 梅德林 牙周病 牙科 政治学 法学
作者
Daniel Manoil,Ana Parga,Nagihan Bostancı,Georgios N. Belibasakis
出处
期刊:Periodontology 2000 [Wiley]
卷期号:95 (1): 176-193 被引量:15
标识
DOI:10.1111/prd.12571
摘要

Microbial analytical methods have been instrumental in elucidating the complex microbial etiology of periodontal diseases, by shaping our understanding of subgingival community dynamics. Certain pathobionts can orchestrate the establishment of dysbiotic communities that can subvert the host immune system, triggering inflammation and tissue destruction. Yet, diagnosis and management of periodontal conditions still rely on clinical and radiographic examinations, overlooking the well-established microbial etiology. This review summarizes the chronological emergence of periodontal etiological models and the co-evolution with technological advances in microbial detection. We additionally review the microbial analytical approaches currently accessible to clinicians, highlighting their value in broadening the periodontal assessment. The epidemiological importance of obtaining culture-based antimicrobial susceptibility profiles of periodontal taxa for antibiotic resistance surveillance is also underscored, together with clinically relevant analytical approaches to guide antibiotherapy choices, when necessary. Furthermore, the importance of 16S-based community and shotgun metagenomic profiling is discussed in outlining dysbiotic microbial signatures. Because dysbiosis precedes periodontal damage, biomarker identification offers early diagnostic possibilities to forestall disease relapses during maintenance. Altogether, this review highlights the underutilized potential of clinical microbiology in periodontology, spotlighting the clinical areas most conductive to its diagnostic implementation for enhancing prevention, treatment predictability, and addressing global antibiotic resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到 ,获得积分10
1秒前
3秒前
默默完成签到,获得积分10
4秒前
123发布了新的文献求助10
5秒前
兔兔发布了新的文献求助10
5秒前
bofu发布了新的文献求助10
8秒前
斯文败类应助6528以采纳,获得10
8秒前
慧海拾穗完成签到 ,获得积分10
10秒前
Atlantic完成签到,获得积分10
10秒前
11秒前
情怀应助YEE采纳,获得30
12秒前
刘明生发布了新的文献求助10
13秒前
泥過完成签到 ,获得积分10
13秒前
15秒前
重要的天寿完成签到 ,获得积分10
15秒前
bofu发布了新的文献求助10
15秒前
小小狗发布了新的文献求助10
16秒前
17秒前
18秒前
烟花应助刘明生采纳,获得10
18秒前
今天只做一件事应助macxinn采纳,获得10
20秒前
21秒前
37星河75完成签到,获得积分20
21秒前
无辜洋葱发布了新的文献求助10
22秒前
22秒前
bofu发布了新的文献求助10
22秒前
23秒前
柔弱紊完成签到,获得积分10
23秒前
37星河75发布了新的文献求助10
24秒前
cherry bomb完成签到,获得积分10
25秒前
Synan完成签到,获得积分10
25秒前
柔弱紊发布了新的文献求助10
26秒前
reuslee发布了新的文献求助10
26秒前
zero完成签到,获得积分10
27秒前
yyy发布了新的文献求助10
28秒前
28秒前
29秒前
bofu发布了新的文献求助10
29秒前
香蕉觅云应助reuslee采纳,获得10
31秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734505
求助须知:如何正确求助?哪些是违规求助? 3278465
关于积分的说明 10009670
捐赠科研通 2995064
什么是DOI,文献DOI怎么找? 1643182
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196