氧化镉
生物炭
镉
砷
氧化铁
氢氧化物
氧化物
纳米-
化学
无机化学
材料科学
冶金
热解
有机化学
复合材料
作者
Peng Lyu,Lianfang Li,Xue Zhou,Jinli Huang,Jing Ye,Xue Liu,Jinni Xie,Zihan Wang
标识
DOI:10.1016/j.cej.2024.152847
摘要
The impact of organic solid waste-supported nanomaterial application on the biogeochemical looping of arsenic (As) and cadmium (Cd) in rhizosphere-root system of rice remains unclear. This study investigated the biochar-supported Fe-(oxyhydr)oxide and layered double hydroxide (FLBC) to modify As and Cd species and their accumulation in rice rhizosphere system under all life-cycle. The results demonstrated that total As and Cd in porewater and rice tissues decreased by > 70 % following 1 wt% FLBC application, close to national standards in grain. Inorganic As levels significantly decreased in roots and grains under FLBC application, resulting in the preferential accumulation of organic As like dimethylarsenate. FLBC amendment substantially increased the Fe plaques on root surfaces due to a rise in Fe(II) sink influenced by Fe(III)-reducing bacteria, and then promoted the conversion of crystalline-like FeOx to an amorphous-like structure on Fe plaque through X-ray diffraction and transmission electron microscope technologies (TEM), eventually reducing the As and Cd availabilities. The ultrastructural characterization, employing TEM equipped EDS spectrometer, revealed the bioassembly of nanoscale layered double hydroxide for the first time within the vacuoles of xylem cells in the root apex under FLBC amendment. This process allowed the transformation of As and Cd species from metastable Fe–Al oxides-bound compounds to stable complexations of cysteine-bound As(V)/Cd and Cd(OH)2 within the intracellular spaces, as demonstrated by X-ray absorption near fine structure spectrum. In short, FLBC hindered the transformation and accumulation of As and Cd species in the rhizosphere-root system, providing a fresh perspective on organic solid waste-supported nanomaterials for ensuring safe crop production.
科研通智能强力驱动
Strongly Powered by AbleSci AI