光催化
渗透(战争)
材料科学
自然(考古学)
纳米技术
化学
催化作用
地质学
工程类
古生物学
生物化学
运筹学
作者
Anshuo Li,Yifei Li,Yanmin Jia,Yuchu He,Yuan Meng,Zining Hao,Yaqian He,Yihan Fu,Jinhui Zhang,Dawei Gao,Xuwu Zhang,Xinquan Jiang,Wenkang Tu
标识
DOI:10.1002/adhm.202400596
摘要
In oncological nanomedicine, overcoming the dual-phase high interstitial pressure in the tumor microenvironment is pivotal for enhancing the penetration and efficacy of nanotherapeutics. The elevated tumor interstitial solid pressure (TISP) is largely attributed to the overaccumulation of collagen in the extracellular matrix, while the increased tumor interstitial fluid pressure (TIFP) stems from the accumulation of fluid due to the aberrant vascular architecture. In this context, metal-organic frameworks (MOFs) with catalytic efficiency have shown potential in degrading tumor interstitial components, thereby reducing interstitial pressure. However, the potential biotoxicity of the organic components of MOFs limits their clinical translation. To circumvent this, a MOF-like photocatalytic nanozyme, RPC@M, using naturally derived cobalt phytate (CoPA) and resveratrol (Res) is developed. This nanozyme not only facilitates the decomposition of water in the tumor interstitium under photoactivation to reduce TIFP, but also generates an abundance of reactive oxygen species through its peroxidase-like activity to exert cytotoxic effects on tumor cells. Moreover, Res contributes to the reduction of collagen deposition, thereby lowering TISP. The concurrent diminution of both TISP and TIFP by RPC@M leads to enhanced tumor penetration and potent antitumor activity, presenting an innovative approach in constructing tumor therapeutic nanozymes from natural products.
科研通智能强力驱动
Strongly Powered by AbleSci AI