Replication Data for: Computer-Assisted Keyword and Document Set Discovery from Unstructured Text

复制(统计) 计算机科学 集合(抽象数据类型) 情报检索 非结构化数据 数据集 数据挖掘 人工智能 生物 大数据 程序设计语言 病毒学
作者
Gary King,Patrick Lam,Margaret E. Roberts
标识
DOI:10.7910/dvn/fmjdcd
摘要

The (unheralded) first step in many applications of automated text analysis involves selecting keywords to choose documents from a large text corpus for further study. Although all substantive results depend on this choice, researchers usually pick keywords in ad hoc ways that are far from optimal and usually biased. Most seem to think that keyword selection is easy, since they do Google searches every day, but we demonstrate that humans perform exceedingly poorly at this basic task. We offer a better approach, one that also can help with following conversations where participants rapidly innovate language to evade authorities, seek political advantage, or express creativity; generic web searching; eDiscovery; look-alike modeling; industry and intelligence analysis; and sentiment and topic analysis. We develop a computer-assisted (as opposed to fully automated or human-only) statistical approach that suggests keywords from available text without needing structured data as inputs. This framing poses the statistical problem in a new way, which leads to a widely applicable algorithm. Our specific approach is based on training classifiers, extracting information from (rather than correcting) their mistakes, and summarizing results with easy-to-understand Boolean search strings. We illustrate how the technique works with analyses of English texts about the Boston Marathon Bombings, Chinese social media posts designed to evade censorship, and others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆完成签到,获得积分10
刚刚
淡淡友瑶完成签到,获得积分10
刚刚
Mmmmarys完成签到,获得积分10
刚刚
jubai应助聪慧的馒头mu采纳,获得10
1秒前
1秒前
jubai应助聪慧的馒头mu采纳,获得10
1秒前
大个应助飘逸数据线采纳,获得10
2秒前
科研完成签到,获得积分10
2秒前
哈哈完成签到,获得积分20
2秒前
2秒前
qfly123完成签到,获得积分10
2秒前
2秒前
wang完成签到,获得积分10
3秒前
3秒前
furin001完成签到,获得积分10
3秒前
2424完成签到,获得积分10
3秒前
3秒前
超人发布了新的文献求助10
3秒前
科研通AI6应助甾醇采纳,获得10
3秒前
茉行发布了新的文献求助10
4秒前
4秒前
Panchael完成签到,获得积分10
4秒前
4秒前
5秒前
内向以彤完成签到,获得积分10
5秒前
天天快乐应助拼搏的高高采纳,获得10
5秒前
orixero应助ilmiss采纳,获得10
6秒前
Jasper应助典雅的俊驰采纳,获得10
6秒前
Akim应助曾经的代曼采纳,获得10
6秒前
jkhjkhj发布了新的文献求助10
6秒前
6秒前
杨宝仪完成签到,获得积分10
7秒前
7秒前
7秒前
LLLLLL发布了新的文献求助10
7秒前
Ava应助内向以彤采纳,获得10
7秒前
风起人散完成签到,获得积分10
8秒前
59完成签到,获得积分10
8秒前
丰富采波完成签到 ,获得积分20
8秒前
旋转门完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654