Replication Data for: Computer-Assisted Keyword and Document Set Discovery from Unstructured Text

复制(统计) 计算机科学 集合(抽象数据类型) 情报检索 非结构化数据 数据集 数据挖掘 人工智能 生物 大数据 程序设计语言 病毒学
作者
Gary King,Patrick Lam,Margaret E. Roberts
标识
DOI:10.7910/dvn/fmjdcd
摘要

The (unheralded) first step in many applications of automated text analysis involves selecting keywords to choose documents from a large text corpus for further study. Although all substantive results depend on this choice, researchers usually pick keywords in ad hoc ways that are far from optimal and usually biased. Most seem to think that keyword selection is easy, since they do Google searches every day, but we demonstrate that humans perform exceedingly poorly at this basic task. We offer a better approach, one that also can help with following conversations where participants rapidly innovate language to evade authorities, seek political advantage, or express creativity; generic web searching; eDiscovery; look-alike modeling; industry and intelligence analysis; and sentiment and topic analysis. We develop a computer-assisted (as opposed to fully automated or human-only) statistical approach that suggests keywords from available text without needing structured data as inputs. This framing poses the statistical problem in a new way, which leads to a widely applicable algorithm. Our specific approach is based on training classifiers, extracting information from (rather than correcting) their mistakes, and summarizing results with easy-to-understand Boolean search strings. We illustrate how the technique works with analyses of English texts about the Boston Marathon Bombings, Chinese social media posts designed to evade censorship, and others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
桐桐应助张张采纳,获得10
1秒前
QDDYR完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
11完成签到,获得积分10
3秒前
3秒前
Ethereal完成签到,获得积分10
3秒前
樱桃汽水怪兽完成签到,获得积分10
3秒前
4秒前
Hello应助ares-gxd采纳,获得10
4秒前
肖旻发布了新的文献求助30
4秒前
罗舒发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
哀诉好的发布了新的文献求助10
5秒前
614606480@qq.com完成签到,获得积分10
5秒前
5秒前
威武青亦完成签到,获得积分10
6秒前
六宫粉黛完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
wzzznh发布了新的文献求助10
7秒前
QIZH完成签到,获得积分10
8秒前
请叫我龙局完成签到,获得积分10
8秒前
9秒前
jixia发布了新的文献求助10
9秒前
10秒前
闪闪的诗珊应助miemie66采纳,获得10
10秒前
饱满老黑发布了新的文献求助10
10秒前
新定义发布了新的文献求助30
11秒前
结实老四发布了新的文献求助30
11秒前
故国神游发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851