已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hierarchical Fault Diagnosis Model for Planetary Gearbox With Shift-Invariant Dictionary and OMPAN

不变(物理) 模式识别(心理学) 计算机科学 人工智能 数学 数学物理
作者
Ronghua Chen,Yingkui Gu,Peng Huang,Junjie Chen,Guangqi Qiu
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASME International]
卷期号:10 (3)
标识
DOI:10.1115/1.4065442
摘要

Abstract Planetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with three subclassifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by experiments. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣惜灵发布了新的文献求助10
2秒前
科研通AI6.1应助shi hui采纳,获得10
3秒前
Yule发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
5秒前
杰杰完成签到,获得积分10
6秒前
7373完成签到 ,获得积分10
7秒前
认真的小笼包完成签到,获得积分10
7秒前
7秒前
10秒前
衣裳薄发布了新的文献求助10
10秒前
hahahahah1111发布了新的文献求助10
11秒前
热爱科研的小白鼠完成签到,获得积分10
11秒前
图图完成签到,获得积分10
11秒前
12秒前
自由难破完成签到,获得积分10
13秒前
14秒前
fengw420完成签到,获得积分10
16秒前
cxm发布了新的文献求助10
16秒前
16秒前
20秒前
科研通AI2S应助wenzheng采纳,获得10
20秒前
哈哈哈发布了新的文献求助10
20秒前
cube完成签到 ,获得积分10
21秒前
21秒前
曙光发布了新的文献求助10
22秒前
韩明轩发布了新的文献求助10
23秒前
Orange应助风趣惜灵采纳,获得10
23秒前
朴实子骞完成签到 ,获得积分10
24秒前
Bin完成签到,获得积分10
25秒前
shi hui发布了新的文献求助10
25秒前
28秒前
Mei完成签到,获得积分20
29秒前
朝颜发布了新的文献求助10
30秒前
sci2025opt完成签到 ,获得积分10
30秒前
31秒前
深情安青应助韩明轩采纳,获得10
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938