A Hierarchical Fault Diagnosis Model for Planetary Gearbox With Shift-Invariant Dictionary and OMPAN

不变(物理) 模式识别(心理学) 计算机科学 人工智能 数学 数学物理
作者
Ronghua Chen,Yingkui Gu,Peng Huang,Junjie Chen,Guangqi Qiu
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASME International]
卷期号:10 (3)
标识
DOI:10.1115/1.4065442
摘要

Abstract Planetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with three subclassifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by experiments. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潺潺流水完成签到,获得积分10
1秒前
张zz发布了新的文献求助10
2秒前
2秒前
2秒前
好名字完成签到,获得积分10
3秒前
眼睛大的书易完成签到,获得积分10
3秒前
烦恼大海发布了新的文献求助10
3秒前
lmy完成签到,获得积分10
3秒前
岘屿完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
晴qq发布了新的文献求助10
5秒前
5秒前
墨月发布了新的文献求助10
6秒前
费1发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
斯文败类应助xzh采纳,获得10
8秒前
9秒前
好名字发布了新的文献求助10
9秒前
墙雨轩完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助QYPANG采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
能干巨人应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
轨迹应助科研通管家采纳,获得20
11秒前
斯文败类应助科研通管家采纳,获得200
11秒前
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
南瓜发布了新的文献求助10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
Eatanicecube完成签到,获得积分10
11秒前
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
cjl应助科研通管家采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685