A Hierarchical Fault Diagnosis Model for Planetary Gearbox With Shift-Invariant Dictionary and OMPAN

不变(物理) 模式识别(心理学) 计算机科学 人工智能 数学 数学物理
作者
Ronghua Chen,Yingkui Gu,Peng Huang,Junjie Chen,Guangqi Qiu
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASM International]
卷期号:10 (3)
标识
DOI:10.1115/1.4065442
摘要

Abstract Planetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with three subclassifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by experiments. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dopamine发布了新的文献求助10
刚刚
麦乐迪应助圆圆采纳,获得10
1秒前
2秒前
幼儿园老大完成签到,获得积分10
2秒前
infe完成签到,获得积分10
2秒前
高高完成签到,获得积分10
2秒前
可爱问寒完成签到 ,获得积分20
3秒前
乘乘完成签到 ,获得积分10
4秒前
Syanyi完成签到 ,获得积分10
4秒前
4秒前
4秒前
领导范儿应助宁阿霜采纳,获得10
6秒前
知名不具发布了新的文献求助10
8秒前
8秒前
8秒前
小二郎应助称心的寄风采纳,获得10
9秒前
荼蘼发布了新的文献求助10
9秒前
吱吱吱完成签到 ,获得积分10
9秒前
Qianwen发布了新的文献求助10
10秒前
VDC应助虚心的芹采纳,获得30
10秒前
10秒前
高兴的又菡完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
linman发布了新的文献求助10
12秒前
马兵发布了新的文献求助10
13秒前
Saya发布了新的文献求助10
13秒前
LL发布了新的文献求助10
13秒前
我爱睡觉完成签到 ,获得积分10
14秒前
yenom发布了新的文献求助10
14秒前
乐乐应助HJJHJH采纳,获得10
15秒前
顾矜应助科研小畅采纳,获得10
15秒前
jiao发布了新的文献求助10
16秒前
孤独的枫叶完成签到,获得积分10
16秒前
16秒前
情怀应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176