Single-Stage Bidirectional Three-Level AC/DC LLC Resonant Converter with High Power Factor

功率因数 阶段(地层学) 功率(物理) 电气工程 物理 谐振变换器 转换器 工程类 地质学 量子力学 古生物学
作者
C Hrudhya Kurian,Antony K Peter
标识
DOI:10.1109/specon61254.2024.10537247
摘要

The increasing demand for efficient and high-performance power converters in electric vehicle technology and renewable energy integration has brought attention to LLC resonant converters due to their advantages in soft switching, inherent short circuit and open circuit protection, and high efficiency. These converters are particularly well-suited for high-frequency operation, making them ideal for electric vehicle battery charging and other power conversion tasks. However, when integrated with a front-end boost power factor correction (PFC) stage in AC-DC applications, challenges arise in maintaining power balance during transients, leading to voltage fluctuations and potential operational instability. Moreover, light load conditions can result in excessive switching frequencies, causing elevated switching losses and control difficulties. Additionally, traditional LLC resonant converters face limitations related to high voltage stress on switches, which affects device reliability and overall converter performance. To address these issues, researchers have explored the use of multilevel inverters, but they introduce complexity and cost. In this context, this paper proposes a novel single-stage, three-level bidirectional AC-DC LLC-based resonant converter with features like zero voltage switching and duty ratio control for output voltage regulation. The converter achieves a unity displacement power factor naturally through discontinuous conduction mode. Simulation results demonstrate the converter's effectiveness of the proposed topology. The proposed converter offers a promising solution for Electric vehicle chargers, combining unity power factor operation and efficient bidirectional power flow control in a single topology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助123采纳,获得10
刚刚
刚刚
linjunqi完成签到,获得积分10
1秒前
JKL77完成签到,获得积分10
2秒前
平水发布了新的文献求助10
2秒前
3秒前
4秒前
冰冰完成签到,获得积分20
4秒前
4秒前
Eileen发布了新的文献求助10
4秒前
4秒前
林蓥颖发布了新的文献求助20
5秒前
huhuhu发布了新的文献求助10
6秒前
顾矜应助Spice采纳,获得10
6秒前
6秒前
BowieHuang应助我我我采纳,获得10
6秒前
6秒前
钟梓袄发布了新的文献求助10
7秒前
7秒前
桐桐应助云予采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
希望天下0贩的0应助fan采纳,获得10
8秒前
8秒前
8秒前
nilu完成签到,获得积分10
8秒前
9秒前
CipherSage应助guojingjing采纳,获得10
9秒前
DAWN发布了新的文献求助10
9秒前
Hello应助沉静的樱桃采纳,获得10
9秒前
小鲨鱼完成签到,获得积分20
9秒前
10秒前
10秒前
科研通AI6.1应助扁扁xx采纳,获得30
10秒前
春夏发布了新的文献求助10
11秒前
12秒前
昊昊发布了新的文献求助10
12秒前
科研通AI6.1应助泛舟采纳,获得10
12秒前
clairekk发布了新的文献求助50
12秒前
wxh发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775976
求助须知:如何正确求助?哪些是违规求助? 5627280
关于积分的说明 15440657
捐赠科研通 4908271
什么是DOI,文献DOI怎么找? 2641135
邀请新用户注册赠送积分活动 1588932
关于科研通互助平台的介绍 1543784