功率因数
阶段(地层学)
功率(物理)
电气工程
物理
谐振变换器
转换器
工程类
地质学
古生物学
量子力学
作者
C Hrudhya Kurian,Antony K Peter
标识
DOI:10.1109/specon61254.2024.10537247
摘要
The increasing demand for efficient and high-performance power converters in electric vehicle technology and renewable energy integration has brought attention to LLC resonant converters due to their advantages in soft switching, inherent short circuit and open circuit protection, and high efficiency. These converters are particularly well-suited for high-frequency operation, making them ideal for electric vehicle battery charging and other power conversion tasks. However, when integrated with a front-end boost power factor correction (PFC) stage in AC-DC applications, challenges arise in maintaining power balance during transients, leading to voltage fluctuations and potential operational instability. Moreover, light load conditions can result in excessive switching frequencies, causing elevated switching losses and control difficulties. Additionally, traditional LLC resonant converters face limitations related to high voltage stress on switches, which affects device reliability and overall converter performance. To address these issues, researchers have explored the use of multilevel inverters, but they introduce complexity and cost. In this context, this paper proposes a novel single-stage, three-level bidirectional AC-DC LLC-based resonant converter with features like zero voltage switching and duty ratio control for output voltage regulation. The converter achieves a unity displacement power factor naturally through discontinuous conduction mode. Simulation results demonstrate the converter's effectiveness of the proposed topology. The proposed converter offers a promising solution for Electric vehicle chargers, combining unity power factor operation and efficient bidirectional power flow control in a single topology.
科研通智能强力驱动
Strongly Powered by AbleSci AI