电解质
电池(电)
锂(药物)
导电体
材料科学
膜
离子
固态
锂离子电池
聚合物电解质
聚合物
锂电池
化学工程
纳米技术
化学
离子电导率
电极
工程类
复合材料
工程物理
离子键合
物理
有机化学
热力学
医学
物理化学
内分泌学
功率(物理)
生物化学
作者
Yeonju Cho,Anh Le Mong,Hai Anh Hoang,Dukjoon Kim
标识
DOI:10.1016/j.est.2024.112295
摘要
In this study, hybrid solid electrolyte (HSE) membranes are fabricated by embedding Li1.3Al0.3Ti1.7(PO4)3 (LATP) nanoparticles into the semi-interpenetrating network of polyacrylonitrile (PAN)/poly (ethylene glycol) dimethacrylate (PEGDA) for solid-state lithium metal battery. The semi-interpenetrating network, established by cross-linking of PEGDA, is designed to optimize polymer morphology for high Li+ conduction. The integration of LATP, a NASICON-type Li-ion conductor, serves the dual purpose of elevating the single Li+ ion conductivity while bolstering the mechanical integrity of the membrane. The synthesized HSE membrane shows outstanding Li+ conductivity of 1.06 × 10−3 S cm−1, and a lithium transference number of 0.64 at room temperature, exhibiting good flexibility and a tensile strength of 1.76 MPa and Young's modulus of 0.1 GPa. It also possesses durability with a broad electrochemical window of up to 4.8 V vs. Li+/Li, maintaining the long-term stability with Li metal over 1000 cycles at room temperature. Owing to those superior attributes, the LFP|HSE|Li cell shows an excellent discharge capacity of 164 mAh g−1 at 0.2C, maintaining the coulombic efficiency of approximately 99% after 120 cycles at room temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI