Outcome Prediction Using Multi-Modal Information: Integrating Large Language Model-Extracted Clinical Information and Image Analysis

计算机科学 结果(博弈论) 情态动词 图像(数学) 信息模型 人工智能 数据挖掘 模式识别(心理学) 情报检索 机器学习 自然语言处理 软件工程 数学 化学 数理经济学 高分子化学
作者
D. H. Sun,Lubomir M. Hadjiiski,John Gormley,Heang‐Ping Chan,Elaine M. Caoili,Richard H. Cohan,Ajjai Alva,Bruno Giulia,Rada Mihalcea,Chuan Zhou,Vikas Gulani
出处
期刊:Cancers [MDPI AG]
卷期号:16 (13): 2402-2402
标识
DOI:10.3390/cancers16132402
摘要

Survival prediction post-cystectomy is essential for the follow-up care of bladder cancer patients. This study aimed to evaluate artificial intelligence (AI)-large language models (LLMs) for extracting clinical information and improving image analysis, with an initial application involving predicting five-year survival rates of patients after radical cystectomy for bladder cancer. Data were retrospectively collected from medical records and CT urograms (CTUs) of bladder cancer patients between 2001 and 2020. Of 781 patients, 163 underwent chemotherapy, had pre- and post-chemotherapy CTUs, underwent radical cystectomy, and had an available post-surgery five-year survival follow-up. Five AI-LLMs (Dolly-v2, Vicuna-13b, Llama-2.0-13b, GPT-3.5, and GPT-4.0) were used to extract clinical descriptors from each patient’s medical records. As a reference standard, clinical descriptors were also extracted manually. Radiomics and deep learning descriptors were extracted from CTU images. The developed multi-modal predictive model, CRD, was based on the clinical (C), radiomics (R), and deep learning (D) descriptors. The LLM retrieval accuracy was assessed. The performances of the survival predictive models were evaluated using AUC and Kaplan–Meier analysis. For the 163 patients (mean age 64 ± 9 years; M:F 131:32), the LLMs achieved extraction accuracies of 74%~87% (Dolly), 76%~83% (Vicuna), 82%~93% (Llama), 85%~91% (GPT-3.5), and 94%~97% (GPT-4.0). For a test dataset of 64 patients, the CRD model achieved AUCs of 0.89 ± 0.04 (manually extracted information), 0.87 ± 0.05 (Dolly), 0.83 ± 0.06~0.84 ± 0.05 (Vicuna), 0.81 ± 0.06~0.86 ± 0.05 (Llama), 0.85 ± 0.05~0.88 ± 0.05 (GPT-3.5), and 0.87 ± 0.05~0.88 ± 0.05 (GPT-4.0). This study demonstrates the use of LLM model-extracted clinical information, in conjunction with imaging analysis, to improve the prediction of clinical outcomes, with bladder cancer as an initial example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caitSith完成签到,获得积分10
刚刚
1秒前
充电宝应助杜若采纳,获得10
1秒前
寒冷的如南完成签到,获得积分10
2秒前
2秒前
2秒前
大模型应助花凉采纳,获得10
3秒前
3秒前
小蘑菇应助虚心的灵儿采纳,获得10
3秒前
5秒前
5秒前
6秒前
贾克斯发布了新的文献求助10
6秒前
orixero应助MyMiao采纳,获得10
8秒前
铁路桥完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
xcf发布了新的文献求助10
9秒前
z1z1z发布了新的文献求助10
11秒前
12秒前
bangbangsh发布了新的文献求助100
12秒前
ENO_i发布了新的文献求助10
12秒前
12秒前
幸福寒梅发布了新的文献求助10
12秒前
李爱国应助大方沛文采纳,获得10
13秒前
aaaaaa完成签到,获得积分20
13秒前
wjjc发布了新的文献求助10
14秒前
杜若发布了新的文献求助10
14秒前
14秒前
14秒前
ardejiang发布了新的文献求助10
16秒前
honest完成签到 ,获得积分10
16秒前
彭于晏应助123采纳,获得10
17秒前
冷如松完成签到,获得积分10
17秒前
orixero应助詹姆斯采纳,获得10
18秒前
liuzhanyu发布了新的文献求助10
20秒前
20秒前
研友_VZG7GZ应助z1z1z采纳,获得10
20秒前
tdtk发布了新的文献求助10
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608