Outcome Prediction Using Multi-Modal Information: Integrating Large Language Model-Extracted Clinical Information and Image Analysis

计算机科学 结果(博弈论) 情态动词 图像(数学) 信息模型 人工智能 数据挖掘 模式识别(心理学) 情报检索 机器学习 自然语言处理 软件工程 数学 数理经济学 化学 高分子化学
作者
D. H. Sun,Lubomir M. Hadjiiski,John Gormley,Heang‐Ping Chan,Elaine M. Caoili,Richard H. Cohan,Ajjai Alva,Bruno Giulia,Rada Mihalcea,Chuan Zhou,Vikas Gulani
出处
期刊:Cancers [MDPI AG]
卷期号:16 (13): 2402-2402
标识
DOI:10.3390/cancers16132402
摘要

Survival prediction post-cystectomy is essential for the follow-up care of bladder cancer patients. This study aimed to evaluate artificial intelligence (AI)-large language models (LLMs) for extracting clinical information and improving image analysis, with an initial application involving predicting five-year survival rates of patients after radical cystectomy for bladder cancer. Data were retrospectively collected from medical records and CT urograms (CTUs) of bladder cancer patients between 2001 and 2020. Of 781 patients, 163 underwent chemotherapy, had pre- and post-chemotherapy CTUs, underwent radical cystectomy, and had an available post-surgery five-year survival follow-up. Five AI-LLMs (Dolly-v2, Vicuna-13b, Llama-2.0-13b, GPT-3.5, and GPT-4.0) were used to extract clinical descriptors from each patient’s medical records. As a reference standard, clinical descriptors were also extracted manually. Radiomics and deep learning descriptors were extracted from CTU images. The developed multi-modal predictive model, CRD, was based on the clinical (C), radiomics (R), and deep learning (D) descriptors. The LLM retrieval accuracy was assessed. The performances of the survival predictive models were evaluated using AUC and Kaplan–Meier analysis. For the 163 patients (mean age 64 ± 9 years; M:F 131:32), the LLMs achieved extraction accuracies of 74%~87% (Dolly), 76%~83% (Vicuna), 82%~93% (Llama), 85%~91% (GPT-3.5), and 94%~97% (GPT-4.0). For a test dataset of 64 patients, the CRD model achieved AUCs of 0.89 ± 0.04 (manually extracted information), 0.87 ± 0.05 (Dolly), 0.83 ± 0.06~0.84 ± 0.05 (Vicuna), 0.81 ± 0.06~0.86 ± 0.05 (Llama), 0.85 ± 0.05~0.88 ± 0.05 (GPT-3.5), and 0.87 ± 0.05~0.88 ± 0.05 (GPT-4.0). This study demonstrates the use of LLM model-extracted clinical information, in conjunction with imaging analysis, to improve the prediction of clinical outcomes, with bladder cancer as an initial example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助仲天与采纳,获得10
刚刚
刚刚
2秒前
虚心的颜完成签到,获得积分20
2秒前
2秒前
2秒前
葳蕤发布了新的文献求助10
2秒前
yuxiaoye应助徐小铖采纳,获得10
3秒前
酷波er应助CC采纳,获得10
3秒前
3秒前
共享精神应助Capacition6采纳,获得10
3秒前
4秒前
丰富的乐儿完成签到,获得积分10
4秒前
研友_VZG7GZ应助一一采纳,获得10
5秒前
茉莉发布了新的文献求助10
5秒前
5秒前
5秒前
早早完成签到,获得积分10
6秒前
euruss发布了新的文献求助50
6秒前
jingjing-8995发布了新的文献求助10
6秒前
6秒前
6秒前
空山发布了新的文献求助10
6秒前
kei发布了新的文献求助10
6秒前
Swuliu发布了新的文献求助10
7秒前
renshiq完成签到,获得积分10
8秒前
8秒前
脑洞疼应助风中悟空采纳,获得30
9秒前
10秒前
10秒前
科研通AI6应助不渝采纳,获得10
10秒前
orthojiang完成签到,获得积分10
10秒前
Karr发布了新的文献求助200
11秒前
11秒前
小二郎应助syxz0628采纳,获得10
11秒前
12秒前
jingjing-8995完成签到,获得积分10
12秒前
13秒前
墩墩关注了科研通微信公众号
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500