LGVIT: Local-Global Vision Transformer for Breast Cancer Histopathological Image Classification

计算机科学 卷积神经网络 人工智能 地点 深度学习 安全性令牌 变压器 模式识别(心理学) 机器学习 计算机安全 语言学 量子力学 物理 哲学 电压
作者
Lang Wang,Juan Liu,Peng Jiang,Dehua Cao,Baochuan Pang
标识
DOI:10.1109/icassp49357.2023.10096781
摘要

Breast cancer histopathological image classification has made great progress with the use of Convolutional Neural Networks (CNNs). However, due to the limited receptive field, CNNs have difficulty in learning the global information of breast cancer histopathological images, hindering the further improvement of this task. To solve this problem, we reasonably apply self-attention mechanism to this task and propose a new network called Local-Global Vision Transformer (LGViT) which utilizes CNNs to capture local features and self-attention mechanism to learn global features of histopathological images. LGViT has several advantages: (1) We propose Local-Global Multi-head Self-attention, a new mechanism that models long-range dependencies with low computational cost. In this mechanism, self-attention is first performed separately within each window. Then, Multiple Instance Learning scheme is utilized to obtain a representative token for each window. Finally, we compute self-attention among these representative tokens to capture global information. (2) We propose Ghost Feed-forward Network, which compensates for the deficiency of Vision Transformer in capturing local features via a locality mechanism. (3) We use a CNN stem to effectively capture low-level information. Experiments on the PatchCamelyon dataset show that LGViT is better than other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheng应助拾一采纳,获得10
刚刚
江洋大盗发布了新的文献求助10
1秒前
大模型应助年轻蛋挞采纳,获得10
2秒前
小透明发布了新的文献求助10
2秒前
充电宝应助sophy采纳,获得10
3秒前
李爱国应助迷你的豪英采纳,获得10
4秒前
霸气的小刺猬完成签到 ,获得积分10
4秒前
研友_LBR9gL完成签到 ,获得积分10
5秒前
tyk完成签到,获得积分10
6秒前
6秒前
Cx330完成签到 ,获得积分10
6秒前
科研通AI6应助欣喜安蕾采纳,获得10
7秒前
yang完成签到,获得积分10
7秒前
微雨完成签到,获得积分10
8秒前
8秒前
烟花应助江洋大盗采纳,获得10
12秒前
12秒前
13秒前
14秒前
翟翟发布了新的文献求助10
14秒前
CodeCraft应助小思采纳,获得10
14秒前
科研通AI6应助肥鲸鱼采纳,获得10
14秒前
16秒前
儒雅沛菡发布了新的文献求助10
17秒前
18秒前
18秒前
烟花应助小白采纳,获得20
20秒前
22秒前
23秒前
落后的怀柔完成签到,获得积分10
23秒前
24秒前
24秒前
斯文败类应助ycg采纳,获得10
24秒前
墨尘发布了新的文献求助10
25秒前
25秒前
fuiee完成签到,获得积分10
27秒前
Jasper应助QTQ采纳,获得10
27秒前
27秒前
jorgan完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537866
求助须知:如何正确求助?哪些是违规求助? 4625252
关于积分的说明 14595177
捐赠科研通 4565743
什么是DOI,文献DOI怎么找? 2502625
邀请新用户注册赠送积分活动 1481106
关于科研通互助平台的介绍 1452360