Memory-Augmented Deep Unfolding Network for Guided Image Super-resolution

计算机科学 人工智能 图像(数学) 特征(语言学) 锐化 模式识别(心理学) 代表(政治) 先验概率 特征检测(计算机视觉) 计算机视觉 图像处理 哲学 贝叶斯概率 政治 法学 语言学 政治学
作者
Man Zhou,Keyu Yan,Jinshan Pan,Wenqi Ren,Qi Xie,Xiangyong Cao
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:131 (1): 215-242 被引量:46
标识
DOI:10.1007/s11263-022-01699-1
摘要

Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image. However, previous model-based methods mainly take the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image, simply ignoring many non-local common characteristics between them. To alleviate this issue, we firstly propose a maximum a posteriori (MAP) estimation model for GISR with two types of priors on the HR target image, i.e., local implicit prior and global implicit prior. The local implicit prior aims to model the complex relationship between the HR target image and the HR guidance image from a local perspective, and the global implicit prior considers the non-local auto-regression property between the two images from a global perspective. Secondly, we design a novel alternating optimization algorithm to solve this model for GISR. The algorithm is in a concise framework that facilitates to be replicated into commonly used deep network structures. Thirdly, to reduce the information loss across iterative stages, the persistent memory mechanism is introduced to augment the information representation by exploiting the Long short-term memory unit (LSTM) in the image and feature spaces. In this way, a deep network with certain interpretation and high representation ability is built. Extensive experimental results validate the superiority of our method on a variety of GISR tasks, including Pan-sharpening, depth image super-resolution, and MR image super-resolution. Code will be released at https://github.com/manman1995/pansharpening .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dpk发布了新的文献求助10
刚刚
July发布了新的文献求助10
1秒前
852应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
Allonz发布了新的文献求助10
2秒前
yy完成签到,获得积分10
3秒前
aaaa完成签到,获得积分10
4秒前
4秒前
in2you发布了新的文献求助10
4秒前
4秒前
guojingjing发布了新的文献求助10
5秒前
青柠发布了新的文献求助10
6秒前
7秒前
顾惊蛰发布了新的文献求助10
8秒前
加快步伐发布了新的文献求助10
10秒前
addd发布了新的文献求助10
10秒前
Allonz完成签到,获得积分10
11秒前
12秒前
margine完成签到,获得积分10
12秒前
Pie发布了新的文献求助10
12秒前
UGK发布了新的文献求助30
17秒前
yangzai发布了新的文献求助10
18秒前
21秒前
yy完成签到,获得积分10
22秒前
22秒前
Pie完成签到,获得积分10
22秒前
天天快乐应助Hengjian_Pu采纳,获得10
23秒前
24秒前
许珩发布了新的文献求助10
26秒前
丘比特应助别偷我增肌粉采纳,获得10
27秒前
28秒前
29秒前
orixero应助flysky120采纳,获得10
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309