The structure inference of flocking systems based on the trajectories

植绒(纹理) 群体行为 推论 计算机科学 人工智能 机器学习 物理 量子力学
作者
Jingjie Liang,Mingze Qi,Kongjing Gu,Yuan Liang,Zhang Zhang,Xiaojun Duan
出处
期刊:Chaos [American Institute of Physics]
卷期号:32 (10) 被引量:3
标识
DOI:10.1063/5.0106402
摘要

The interaction between the swarm individuals affects the dynamic behavior of the swarm, but it is difficult to obtain directly from outside observation. Therefore, the problem we focus on is inferring the structure of the interactions in the swarm from the individual behavior trajectories. Similar inference problems that existed in network science are named network reconstruction or network inference. It is a fundamental problem pervading research on complex systems. In this paper, a new method, called Motion Trajectory Similarity, is developed for inferring direct interactions from the motion state of individuals in the swarm. It constructs correlations by combining the similarity of the motion trajectories of each cross section of the time series, in which individuals with highly similar motion states are more likely to interact with each other. Experiments on the flocking systems demonstrate that our method can produce a reliable interaction inference and outperform traditional network inference methods. It can withstand a high level of noise and time delay introduced into flocking models, as well as parameter variation in the flocking system, to achieve robust reconstruction. The proposed method provides a new perspective for inferring the interaction structure of a swarm, which helps us to explore the mechanisms of collective movement in swarms and paves the way for developing the flocking models that can be quantified and predicted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Johnny发布了新的文献求助10
1秒前
2秒前
WHH完成签到,获得积分20
2秒前
忧伤的大壮完成签到,获得积分10
3秒前
思源应助qwwer采纳,获得10
3秒前
踏实绮露完成签到 ,获得积分10
3秒前
minkuuuuuuu应助lvzhechen采纳,获得10
4秒前
4秒前
生鱼安乐完成签到,获得积分10
4秒前
4秒前
Courageous发布了新的文献求助10
5秒前
在水一方应助dawn采纳,获得10
6秒前
顾矜应助jiangsu20采纳,获得10
6秒前
充电宝应助陈冲采纳,获得10
7秒前
Yan发布了新的文献求助10
7秒前
Dong完成签到,获得积分10
7秒前
优秀荔枝完成签到,获得积分10
8秒前
Hua完成签到 ,获得积分10
10秒前
bkagyin应助WHH采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
李爱国应助xpeng采纳,获得10
12秒前
12秒前
Akim应助专一的摩托车采纳,获得10
12秒前
脑洞疼应助李四采纳,获得10
13秒前
13秒前
jstss完成签到,获得积分20
13秒前
研友_VZG7GZ应助陌上之心采纳,获得10
15秒前
15秒前
yuwan完成签到,获得积分10
16秒前
内向翰完成签到,获得积分10
16秒前
嗯哼发布了新的文献求助10
17秒前
666发布了新的文献求助10
17秒前
17秒前
在水一方应助小白采纳,获得10
17秒前
Oden完成签到,获得积分10
18秒前
qwwer发布了新的文献求助10
18秒前
19秒前
情怀应助失眠的以蓝采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913