A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data

遥感 环境科学 多光谱图像 反射率 光化学反射率指数 大气校正 卫星 叶绿素a 原位 叶绿素 气象学 叶绿素荧光 化学 地理 光学 生物化学 物理 有机化学 工程类 航空航天工程
作者
J. P. Wang,Xiaoling Chen
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:906: 167631-167631 被引量:10
标识
DOI:10.1016/j.scitotenv.2023.167631
摘要

Chlorophyll-a (Chl-a) concentration is a reliable indicator of phytoplankton biomass and eutrophication, especially in inland waters. Remote sensing provides a means for large-scale Chl-a estimation by linking the spectral water-leaving signal from the water surface with in situ measured Chl-a concentrations. Single-sensor images cannot meet the practical needs for long-term monitoring of Chl-a concentrations due to cloud cover and satellite operational lifetimes. However, quantifying long-term inland water Chl-a concentrations using multi-source remote sensing data remains a problem, as improper input of satellite reflectance products will affect the accuracy of Chl-a over inland waters, as well as existing models cannot meet the need for multi-source remote sensing data to retrieve high precision Chl-a. To explore these problems towards a solution, four reflectance data derived from Ocean and Land Colour Instrument (OLCI), MultiSpectral Instrument (MSI), and Operational Land Imager (OLI) were evaluated against in situ measurements of Erhai Lake. Reflectance data from these sensors were assessed to determine their consistency. Results indicate that R_rhos products (i.e., surface reflectance, a semi-atmospheric correction reflectance) that controlled for the atmospheric diffuse transmittance were highly correlated with the measured reflectance values. The in situ reflectance also confirmed the higher fidelity of satellite reflectance in the green-red band. Subsequently, a new extreme gradient boosting (XGB) model applied to multi-source remote sensing data is proposed to estimate long-term inland water Chl-a concentrations. Comparative experiments showed the XGB model with R_rhos products outperformed other solutions, providing accurate estimates for daily, monthly, and long-term trends in Erhai Lake. The XGB model was finally processed 3954 R_rhos reflectance data derived from OLCI, ENVISAT Medium Resolution Imaging Spectrometer (MERIS), MSI, and OLI sensors, mapping Chl-a concentrations in Erhai Lake over a 20-year period. This study could serve as a reference for the long-term Chl-a monitoring using multi-source remote sensing data to support inland lake management and future water quality evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Re完成签到,获得积分10
1秒前
2秒前
静注氯化钾完成签到,获得积分10
2秒前
李爱国应助non平行线采纳,获得10
4秒前
qd发布了新的文献求助10
4秒前
6秒前
9秒前
生动的芝发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
16秒前
天天快乐应助鲤鱼冰海采纳,获得10
16秒前
qd关注了科研通微信公众号
17秒前
19秒前
Grin完成签到,获得积分10
19秒前
20秒前
20秒前
non平行线发布了新的文献求助10
20秒前
生动的芝完成签到,获得积分20
21秒前
zy_asd发布了新的文献求助10
22秒前
23秒前
xunlei完成签到,获得积分10
26秒前
完美世界应助生动的芝采纳,获得10
26秒前
处处吻完成签到 ,获得积分10
27秒前
这颗柠檬不够酸完成签到,获得积分10
27秒前
kaifeiQi完成签到,获得积分10
28秒前
28秒前
qio一眼完成签到,获得积分10
28秒前
啦啦鱼完成签到 ,获得积分10
29秒前
bai发布了新的文献求助10
30秒前
CodeCraft应助LJJ采纳,获得10
34秒前
34秒前
34秒前
non平行线完成签到,获得积分10
35秒前
惜名发布了新的文献求助10
38秒前
39秒前
生动的芝发布了新的文献求助10
39秒前
memedaaaah完成签到,获得积分10
41秒前
FashionBoy应助柔弱狗采纳,获得10
42秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141258
求助须知:如何正确求助?哪些是违规求助? 2792257
关于积分的说明 7801943
捐赠科研通 2448459
什么是DOI,文献DOI怎么找? 1302536
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237