A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data

遥感 环境科学 多光谱图像 反射率 光化学反射率指数 大气校正 卫星 叶绿素a 原位 叶绿素 气象学 叶绿素荧光 化学 地理 光学 生物化学 物理 有机化学 工程类 航空航天工程
作者
J. P. Wang,Xiaoling Chen
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:906: 167631-167631 被引量:10
标识
DOI:10.1016/j.scitotenv.2023.167631
摘要

Chlorophyll-a (Chl-a) concentration is a reliable indicator of phytoplankton biomass and eutrophication, especially in inland waters. Remote sensing provides a means for large-scale Chl-a estimation by linking the spectral water-leaving signal from the water surface with in situ measured Chl-a concentrations. Single-sensor images cannot meet the practical needs for long-term monitoring of Chl-a concentrations due to cloud cover and satellite operational lifetimes. However, quantifying long-term inland water Chl-a concentrations using multi-source remote sensing data remains a problem, as improper input of satellite reflectance products will affect the accuracy of Chl-a over inland waters, as well as existing models cannot meet the need for multi-source remote sensing data to retrieve high precision Chl-a. To explore these problems towards a solution, four reflectance data derived from Ocean and Land Colour Instrument (OLCI), MultiSpectral Instrument (MSI), and Operational Land Imager (OLI) were evaluated against in situ measurements of Erhai Lake. Reflectance data from these sensors were assessed to determine their consistency. Results indicate that R_rhos products (i.e., surface reflectance, a semi-atmospheric correction reflectance) that controlled for the atmospheric diffuse transmittance were highly correlated with the measured reflectance values. The in situ reflectance also confirmed the higher fidelity of satellite reflectance in the green-red band. Subsequently, a new extreme gradient boosting (XGB) model applied to multi-source remote sensing data is proposed to estimate long-term inland water Chl-a concentrations. Comparative experiments showed the XGB model with R_rhos products outperformed other solutions, providing accurate estimates for daily, monthly, and long-term trends in Erhai Lake. The XGB model was finally processed 3954 R_rhos reflectance data derived from OLCI, ENVISAT Medium Resolution Imaging Spectrometer (MERIS), MSI, and OLI sensors, mapping Chl-a concentrations in Erhai Lake over a 20-year period. This study could serve as a reference for the long-term Chl-a monitoring using multi-source remote sensing data to support inland lake management and future water quality evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYLynn应助hetao286采纳,获得10
刚刚
2秒前
2秒前
夯大力发布了新的文献求助10
2秒前
2秒前
3秒前
自觉沛芹完成签到,获得积分10
3秒前
YukiXu完成签到 ,获得积分10
3秒前
3秒前
桐桐应助SXM采纳,获得10
4秒前
波特卡斯D艾斯完成签到 ,获得积分10
5秒前
852应助排骨炖豆角采纳,获得10
6秒前
6秒前
顾矜应助木子采纳,获得10
6秒前
feng发布了新的文献求助10
6秒前
成就的小熊猫完成签到,获得积分10
7秒前
7秒前
Morgenstern_ZH完成签到,获得积分10
8秒前
hua发布了新的文献求助10
8秒前
_Forelsket_完成签到,获得积分10
8秒前
8秒前
半颗橙子完成签到 ,获得积分10
10秒前
科研通AI5应助zmy采纳,获得10
10秒前
善学以致用应助enoot采纳,获得10
11秒前
JamesPei应助失眠的血茗采纳,获得10
11秒前
青山发布了新的文献求助10
11秒前
亻鱼发布了新的文献求助10
12秒前
脑洞疼应助成就的小熊猫采纳,获得10
12秒前
12秒前
waterclouds完成签到 ,获得积分10
12秒前
圆圈儿完成签到,获得积分10
12秒前
司空剑封完成签到,获得积分10
13秒前
13秒前
海棠yiyi完成签到,获得积分10
13秒前
13秒前
梁小鑫发布了新的文献求助10
13秒前
Jenny应助圈圈采纳,获得10
14秒前
内向青文完成签到,获得积分10
14秒前
lefora完成签到,获得积分10
14秒前
丰知然应助CO2采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740