The configurational effects of artificial intelligence-based hiring decisions on applicants' justice perception and organisational commitment

程序正义 透明度(行为) 一致性(知识库) 人际交往 定性比较分析 心理学 感知 经济正义 人工智能 知识管理 社会心理学 计算机科学 机器学习 政治学 法学 神经科学 计算机安全
作者
Jun Yu,Zhengcong Ma,Lin Zhu
出处
期刊:Information Technology & People [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/itp-04-2022-0271
摘要

Purpose This study aims to investigate the configurational effects of five rules – artificial intelligence (AI)-based hiring decision transparency, consistency, voice, explainability and human involvement – on applicants' procedural justice perception (APJP) and applicants' interactional justice perception (AIJP). In addition, this study examines whether the identified configurations could further enhance applicants' organisational commitment (OC). Design/methodology/approach Drawing on the justice model of applicants' reactions, the authors conducted a longitudinal survey of 254 newly recruited employees from 36 Chinese companies that utilise AI in their hiring. The authors employed fuzzy-set qualitative comparative analysis (fsQCA) to determine which configurations could improve APJP and AIJP, and the authors used propensity score matching (PSM) to analyse the effects of these configurations on OC. Findings The fsQCA generates three patterns involving five configurations that could improve APJP and AIJP. For pattern 1, when AI-based recruitment with high interpersonal rule (AI human involvement) aims for applicants' justice perception (AJP) through the combination of high informational rule (AI explainability) and high procedural rule (AI voice), there must be high levels of AI consistency and AI voice to complement AI explainability, and only this pattern of configurations can further enhance OC. In pattern 2, for the combination of high informational rule (AI explainability) and low procedural rule (absent AI voice), AI recruitment with high interpersonal rule (AI human involvement) should focus on AI transparency and AI explainability rather than the implementation of AI voice. In pattern 3, a mere combination of procedural rules could sufficiently improve AIJP. Originality/value This study, which involved real applicants, is one of the few empirical studies to explore the mechanisms behind the impact of AI hiring decisions on AJP and OC, and the findings may inform researchers and managers on how to best utilise AI to make hiring decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊发布了新的文献求助10
1秒前
mm发布了新的文献求助10
3秒前
3秒前
柚子完成签到,获得积分10
4秒前
忧郁难胜完成签到,获得积分10
4秒前
Ava应助66采纳,获得10
5秒前
6秒前
小熊完成签到,获得积分10
7秒前
Akim应助断章采纳,获得10
7秒前
FChen完成签到,获得积分10
9秒前
Able关注了科研通微信公众号
9秒前
动听的囧发布了新的文献求助10
9秒前
10秒前
小玉应助熬夜薯条采纳,获得10
10秒前
HCXsir发布了新的文献求助10
11秒前
徐徐发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
家有小涵发布了新的文献求助10
15秒前
15秒前
搜集达人应助冷傲迎梦采纳,获得10
16秒前
16秒前
acutelily完成签到,获得积分10
16秒前
sansronds完成签到,获得积分10
17秒前
江峰发布了新的文献求助10
19秒前
shunshun51213完成签到,获得积分10
19秒前
乐观期待发布了新的文献求助10
19秒前
断章发布了新的文献求助10
20秒前
刘哈哈完成签到,获得积分10
21秒前
杰杰发布了新的文献求助10
21秒前
21秒前
荧光色的乌姜铺里完成签到,获得积分10
21秒前
善学以致用应助小北采纳,获得10
21秒前
研友_8WOb28发布了新的文献求助10
22秒前
会飞的猪完成签到,获得积分10
22秒前
小闰土应助Ethanyoyo0917采纳,获得10
23秒前
Ava应助111采纳,获得10
23秒前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572795
求助须知:如何正确求助?哪些是违规求助? 3142958
关于积分的说明 9449441
捐赠科研通 2844307
什么是DOI,文献DOI怎么找? 1563431
邀请新用户注册赠送积分活动 731771
科研通“疑难数据库(出版商)”最低求助积分说明 718695