The configurational effects of artificial intelligence-based hiring decisions on applicants' justice perception and organisational commitment

程序正义 透明度(行为) 一致性(知识库) 人际交往 定性比较分析 心理学 感知 经济正义 人工智能 知识管理 社会心理学 计算机科学 机器学习 政治学 法学 神经科学 计算机安全
作者
Jun Yu,Zhengcong Ma,Lin Zhu
出处
期刊:Information Technology & People [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/itp-04-2022-0271
摘要

Purpose This study aims to investigate the configurational effects of five rules – artificial intelligence (AI)-based hiring decision transparency, consistency, voice, explainability and human involvement – on applicants' procedural justice perception (APJP) and applicants' interactional justice perception (AIJP). In addition, this study examines whether the identified configurations could further enhance applicants' organisational commitment (OC). Design/methodology/approach Drawing on the justice model of applicants' reactions, the authors conducted a longitudinal survey of 254 newly recruited employees from 36 Chinese companies that utilise AI in their hiring. The authors employed fuzzy-set qualitative comparative analysis (fsQCA) to determine which configurations could improve APJP and AIJP, and the authors used propensity score matching (PSM) to analyse the effects of these configurations on OC. Findings The fsQCA generates three patterns involving five configurations that could improve APJP and AIJP. For pattern 1, when AI-based recruitment with high interpersonal rule (AI human involvement) aims for applicants' justice perception (AJP) through the combination of high informational rule (AI explainability) and high procedural rule (AI voice), there must be high levels of AI consistency and AI voice to complement AI explainability, and only this pattern of configurations can further enhance OC. In pattern 2, for the combination of high informational rule (AI explainability) and low procedural rule (absent AI voice), AI recruitment with high interpersonal rule (AI human involvement) should focus on AI transparency and AI explainability rather than the implementation of AI voice. In pattern 3, a mere combination of procedural rules could sufficiently improve AIJP. Originality/value This study, which involved real applicants, is one of the few empirical studies to explore the mechanisms behind the impact of AI hiring decisions on AJP and OC, and the findings may inform researchers and managers on how to best utilise AI to make hiring decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米米完成签到,获得积分10
3秒前
wwnd发布了新的文献求助10
5秒前
bkagyin应助勿丹采纳,获得20
5秒前
黎星完成签到,获得积分10
8秒前
9秒前
诸觅双完成签到 ,获得积分10
10秒前
852应助高兴寒梦采纳,获得10
10秒前
积极松鼠完成签到,获得积分10
10秒前
山姆弟弟关注了科研通微信公众号
10秒前
li完成签到,获得积分10
11秒前
juice应助Qiangzai采纳,获得10
11秒前
皮皮完成签到 ,获得积分10
11秒前
li发布了新的文献求助10
13秒前
lxbbb完成签到,获得积分10
13秒前
wwnd完成签到,获得积分10
14秒前
dyh6802完成签到,获得积分10
15秒前
16秒前
18秒前
Oct_Y完成签到,获得积分10
18秒前
19秒前
华仔应助俭朴钢铁侠采纳,获得10
20秒前
20秒前
藜藜藜在乎你完成签到 ,获得积分10
20秒前
dyh6802发布了新的文献求助10
22秒前
香蕉觅云应助Narsic采纳,获得10
23秒前
23秒前
1234567890完成签到 ,获得积分10
25秒前
万能图书馆应助成森采纳,获得10
26秒前
寒月如雪完成签到,获得积分10
26秒前
小石头完成签到,获得积分10
27秒前
陶醉水云发布了新的文献求助10
27秒前
彭于晏应助酷炫大白采纳,获得10
28秒前
30秒前
666完成签到,获得积分10
30秒前
ShiYanYang发布了新的文献求助10
32秒前
iamhieuxk完成签到,获得积分10
32秒前
34秒前
彭于晏应助简单采纳,获得10
34秒前
Orange应助简单采纳,获得10
34秒前
Narsic发布了新的文献求助10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572474
求助须知:如何正确求助?哪些是违规求助? 3142633
关于积分的说明 9448405
捐赠科研通 2844063
什么是DOI,文献DOI怎么找? 1563169
邀请新用户注册赠送积分活动 731661
科研通“疑难数据库(出版商)”最低求助积分说明 718667