Machine learning assisted screening of doped metals phosphides electrocatalyst towards efficient hydrogen evolution reaction

催化作用 电负性 电催化剂 吉布斯自由能 密度泛函理论 吸附 过渡金属 无机化学 反应性(心理学) 化学 兴奋剂 材料科学 物理化学 化学工程 电化学 计算化学 热力学 有机化学 物理 医学 替代医学 光电子学 电极 病理 工程类
作者
Shuyi Cao,Yuhong Luo,Tianhang Li,Jingde Li,Lanlan Wu,Guihua Liu
出处
期刊:Molecular Catalysis [Elsevier]
卷期号:551: 113625-113625 被引量:12
标识
DOI:10.1016/j.mcat.2023.113625
摘要

Transition metals (TM) doped metal phosphides usually exhibits promising reactivity towards acidic hydrogen evolution reaction (HER). However, the experimental screening of highly active TM-doped metal phosphides catalyst is time-consuming and challenging. In this study, a density functional theory combined machine learning (DFT-ML) framework is proposed to accelerate the screening and predicting TM-doped metal phosphides-based HER electrocatalysts. In this framework, the ML database is constructed using critical catalyst features and DFT-calculated adsorption energy of HER intermediates. Also, local average electronegativity of the adsorption site and the surrounding atoms as catalyst feature is proposed to describe the reaction sites in this ML model. Using the HER energetics on the state-of-art highly active Pt (111) as benchmark catalyst model, a set of 10 potential active HER catalysts is predicted. By performing the H* adsorption Gibbs free energy change analysis on these ML-predicted catalysts, six promising TM-doped metal phosphides HER catalysts are determined in the sample space. This study provides a facile and effective approach for the quick screening of high-performance HER electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哎小伙子完成签到,获得积分20
刚刚
刚刚
王羿发布了新的文献求助10
刚刚
1秒前
happy完成签到,获得积分20
1秒前
1秒前
liu发布了新的文献求助10
1秒前
2秒前
2秒前
Steffi发布了新的文献求助10
2秒前
anhao完成签到,获得积分10
2秒前
2秒前
竹林听风发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
11发布了新的文献求助10
3秒前
3秒前
xue发布了新的文献求助10
3秒前
CipherSage应助yy采纳,获得10
4秒前
ShiningL完成签到,获得积分10
4秒前
5秒前
头哥应助哎小伙子采纳,获得10
5秒前
5秒前
酷波er应助冷静的方盒采纳,获得10
6秒前
222完成签到,获得积分10
6秒前
6秒前
Polong完成签到,获得积分10
6秒前
meng完成签到 ,获得积分10
6秒前
7秒前
11完成签到,获得积分10
7秒前
faye发布了新的文献求助10
7秒前
午夜小南瓜完成签到 ,获得积分10
8秒前
徐徐徐徐徐徐徐完成签到,获得积分20
9秒前
9秒前
听闻发布了新的文献求助10
9秒前
9秒前
鲁花花完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583465
求助须知:如何正确求助?哪些是违规求助? 4667303
关于积分的说明 14766350
捐赠科研通 4609471
什么是DOI,文献DOI怎么找? 2529219
邀请新用户注册赠送积分活动 1498433
关于科研通互助平台的介绍 1467061