控制理论(社会学)
稳健性(进化)
模型预测控制
电子速度控制
工程类
滑模控制
模式(计算机接口)
期限(时间)
控制(管理)
计算机科学
控制工程
非线性系统
物理
化学
生物化学
量子力学
人工智能
电气工程
基因
操作系统
作者
Long He,Fengxiang Wang,José Rodríguez,Marcelo Lobo Heldwein
出处
期刊:IEEE Transactions on Industrial Electronics
[Institute of Electrical and Electronics Engineers]
日期:2023-10-16
卷期号:: 1-10
被引量:1
标识
DOI:10.1109/tie.2023.3319745
摘要
This article proposes an ultralocal predictive surface-mounted permanent magnet synchronous motor (SPMSM) model-based predefined time sliding mode predictive speed control (UL-SMPC) to achieve exceptional disturbance rejection and tracking performance in SPMSM systems. First, an ultralocal predictive SPMSM model is given, incorporating a time-varying disturbance term and an adaptive control gain. Second, the control gain and disturbance term of the SPMSM model are decoupled and identified, respectively. A control gain optimizer is devised to estimate the control gain, and a predefined time reaching law-based generalized proportional integral observer (PT-GPIO) is developed to estimate the disturbance for each control period. The parameter tuning principles for the control gain optimizer and PT-GPIO are analyzed. Third, a cost index is defined using the predefined time reaching law-based sliding mode surface. Finally, UL-SMPC is synthesized by minimizing the cost index. Experimental results verify the outstanding robustness and tracking performances of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI