亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-agency coordination resource allocation and routing decision-making problem: A coordinated truck-and-drone DSS for improved wildfire detection coverage

后悔 无人机 卡车 列生成 运筹学 计算机科学 决策支持系统 数学优化 工程类 汽车工程 遗传学 数学 机器学习 生物 人工智能
作者
Maryam Momeni,Hamed Soleimani,Shahrooz Shahparvari,Behrouz Afshar-Nadjafi
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:97: 104027-104027 被引量:5
标识
DOI:10.1016/j.ijdrr.2023.104027
摘要

This study proposes a novel coordinated truck-drone system as a decision support system to improve fire suppression operations. The problem in this study is formulated as a bi-objective mathematical model to minimize total monitoring cost and time, considering trucks as mobile drone depots and that drones can fly at various altitudes and access hard-to-reach areas. In addition, time and cost parameters in the mathematical model are deemed uncertain, rendering the model more realistic. Accelerated Benders' decomposition (ABD) is utilized to solve the model rapidly. Furthermore, a column-and-constraint generation (CCG) algorithm is employed, which is an effective method for solving scenario-based models under uncertainty. Two criteria are subsequently used to evaluate and compare proposed robust optimization approaches (risk averse and min-max relative regret). The results indicate that the proposed system can assist firefighters in determining the optimal number of drones and trucks to patrol and the time and cost required to visit all areas. Moreover, the findings demonstrate that the min-max relative regret approach can outperform other methods during the hot season when the risk of wildfire is elevated. In contrast, when the fire risk is lower during the cold season, time and cost can be effectively managed, and a risk-averse strategy can be implemented. Finally, the proposed solution framework can facilitate optimal strategic organizational decision planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8秒前
monica完成签到 ,获得积分10
17秒前
饱满含玉完成签到,获得积分10
21秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得30
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得30
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
安青兰完成签到 ,获得积分10
54秒前
ppppp发布了新的文献求助10
1分钟前
潜行者完成签到 ,获得积分10
1分钟前
小状元完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
槙岛圣护发布了新的文献求助15
2分钟前
ajing完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
3分钟前
王豆豆发布了新的文献求助10
3分钟前
王豆豆完成签到,获得积分10
3分钟前
顾矜应助木叶采纳,获得10
3分钟前
3分钟前
lyt完成签到,获得积分10
3分钟前
喜悦的毛衣完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助友好的尔容采纳,获得10
3分钟前
Adc应助槙岛圣护采纳,获得15
3分钟前
机智的夜云完成签到,获得积分10
4分钟前
烟花应助祖宛凝采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5828910
求助须知:如何正确求助?哪些是违规求助? 6038678
关于积分的说明 15575901
捐赠科研通 4948513
什么是DOI,文献DOI怎么找? 2666311
邀请新用户注册赠送积分活动 1611955
关于科研通互助平台的介绍 1566968