PTBGRP: predicting phage–bacteria interactions with graph representation learning on microbial heterogeneous information network

计算机科学 细菌 分类器(UML) 人工智能 计算生物学 机器学习 生物 遗传学
作者
Jie Pan,Zhu-Hong You,Wencai You,Tian Zhao,Chenlu Feng,Xuexia Zhang,Fengzhi Ren,Sisi Ma,Fan Wang,Shiwei Wang,Yichuang Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad328
摘要

Identifying the potential bacteriophages (phage) candidate to treat bacterial infections plays an essential role in the research of human pathogens. Computational approaches are recognized as a valid way to predict bacteria and target phages. However, most of the current methods only utilize lower-order biological information without considering the higher-order connectivity patterns, which helps to improve the predictive accuracy. Therefore, we developed a novel microbial heterogeneous interaction network (MHIN)-based model called PTBGRP to predict new phages for bacterial hosts. Specifically, PTBGRP first constructs an MHIN by integrating phage-bacteria interaction (PBI) and six bacteria-bacteria interaction networks with their biological attributes. Then, different representation learning methods are deployed to extract higher-level biological features and lower-level topological features from MHIN. Finally, PTBGRP employs a deep neural network as the classifier to predict unknown PBI pairs based on the fused biological information. Experiment results demonstrated that PTBGRP achieves the best performance on the corresponding ESKAPE pathogens and PBI dataset when compared with state-of-art methods. In addition, case studies of Klebsiella pneumoniae and Staphylococcus aureus further indicate that the consideration of rich heterogeneous information enables PTBGRP to accurately predict PBI from a more comprehensive perspective. The webserver of the PTBGRP predictor is freely available at http://120.77.11.78/PTBGRP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助风中寄云采纳,获得10
刚刚
屹舟发布了新的文献求助10
刚刚
Dou完成签到,获得积分10
刚刚
白泯完成签到,获得积分10
1秒前
1ssd发布了新的文献求助10
1秒前
667发布了新的文献求助10
1秒前
小二郎应助辰柒采纳,获得10
2秒前
3秒前
3秒前
clear完成签到,获得积分20
3秒前
3秒前
orixero应助congguitar采纳,获得10
3秒前
Evan完成签到,获得积分10
3秒前
YANG发布了新的文献求助10
4秒前
4秒前
123发布了新的文献求助10
4秒前
sunzhiyu233发布了新的文献求助10
5秒前
Raul完成签到 ,获得积分10
5秒前
5秒前
伯尔尼圆白菜完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
buuyoo完成签到,获得积分10
6秒前
科研通AI5应助魏煜佳采纳,获得10
6秒前
LLxiaolong完成签到,获得积分10
6秒前
7秒前
7秒前
巨噬细胞A完成签到,获得积分10
7秒前
7秒前
我要读博士完成签到 ,获得积分10
7秒前
xxq完成签到,获得积分20
7秒前
福气小姐完成签到 ,获得积分10
7秒前
搜集达人应助jjy采纳,获得10
8秒前
8秒前
郑总完成签到,获得积分10
8秒前
CipherSage应助马尼拉采纳,获得10
8秒前
SCI完成签到 ,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759