PTBGRP: predicting phage–bacteria interactions with graph representation learning on microbial heterogeneous information network

计算机科学 细菌 分类器(UML) 人工智能 计算生物学 机器学习 生物 遗传学
作者
Jie Pan,Zhu-Hong You,Wencai You,Tian Zhao,Chenlu Feng,Xuexia Zhang,Fengzhi Ren,Sisi Ma,Fan Wang,Shiwei Wang,Yichuang Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad328
摘要

Identifying the potential bacteriophages (phage) candidate to treat bacterial infections plays an essential role in the research of human pathogens. Computational approaches are recognized as a valid way to predict bacteria and target phages. However, most of the current methods only utilize lower-order biological information without considering the higher-order connectivity patterns, which helps to improve the predictive accuracy. Therefore, we developed a novel microbial heterogeneous interaction network (MHIN)-based model called PTBGRP to predict new phages for bacterial hosts. Specifically, PTBGRP first constructs an MHIN by integrating phage-bacteria interaction (PBI) and six bacteria-bacteria interaction networks with their biological attributes. Then, different representation learning methods are deployed to extract higher-level biological features and lower-level topological features from MHIN. Finally, PTBGRP employs a deep neural network as the classifier to predict unknown PBI pairs based on the fused biological information. Experiment results demonstrated that PTBGRP achieves the best performance on the corresponding ESKAPE pathogens and PBI dataset when compared with state-of-art methods. In addition, case studies of Klebsiella pneumoniae and Staphylococcus aureus further indicate that the consideration of rich heterogeneous information enables PTBGRP to accurately predict PBI from a more comprehensive perspective. The webserver of the PTBGRP predictor is freely available at http://120.77.11.78/PTBGRP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助感动语蝶采纳,获得10
1秒前
perovskite完成签到,获得积分10
2秒前
南鸢发布了新的文献求助10
4秒前
Owen应助科研通管家采纳,获得10
5秒前
梁三柏应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得50
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得30
5秒前
Orange应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得30
5秒前
梁三柏应助科研通管家采纳,获得10
5秒前
FashionBoy应助浮生采纳,获得10
5秒前
梁三柏应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
梁三柏应助科研通管家采纳,获得10
6秒前
6秒前
humomo发布了新的文献求助10
6秒前
7秒前
xaogny完成签到,获得积分10
9秒前
俊秀的念烟完成签到,获得积分10
9秒前
酷炫灵安完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
13秒前
思源应助大树采纳,获得10
13秒前
顺利毕业完成签到 ,获得积分10
15秒前
azure完成签到 ,获得积分10
15秒前
17秒前
无花果应助务实的以松采纳,获得10
17秒前
18秒前
李爱国应助Bellamie采纳,获得30
18秒前
现代书雪发布了新的文献求助10
18秒前
hcmsaobang2001完成签到,获得积分10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243500
求助须知:如何正确求助?哪些是违规求助? 2887467
关于积分的说明 8248196
捐赠科研通 2556009
什么是DOI,文献DOI怎么找? 1384179
科研通“疑难数据库(出版商)”最低求助积分说明 649825
邀请新用户注册赠送积分活动 625721