亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 机器学习 一般化 卷积(计算机科学) 图形 不变(物理) 人工神经网络 理论计算机科学 数学 心理学 数学分析 精神科 数学物理
作者
Zhongyi Zhang,Qing‐Hao Meng,Li-Cheng Jin,Han-Guang Wang,Hui-Rang Hou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122356-122356 被引量:19
标识
DOI:10.1016/j.eswa.2023.122356
摘要

Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffff完成签到 ,获得积分10
23秒前
47秒前
50秒前
59秒前
1分钟前
如沐春风完成签到,获得积分10
1分钟前
如沐春风发布了新的文献求助10
1分钟前
方沅完成签到,获得积分10
1分钟前
幽默的南珍完成签到 ,获得积分10
1分钟前
小蘑菇应助风华正茂采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得30
1分钟前
1分钟前
科研小菜鸡完成签到 ,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
朱文韬发布了新的文献求助10
2分钟前
nini发布了新的文献求助10
3分钟前
沿途有你完成签到 ,获得积分10
3分钟前
nini完成签到,获得积分10
3分钟前
乐仔完成签到,获得积分10
3分钟前
3分钟前
HEIKU应助乐仔采纳,获得10
3分钟前
tangzhidi发布了新的文献求助10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
执着的寄凡完成签到,获得积分10
3分钟前
Noob_saibot完成签到,获得积分10
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
现代含芙完成签到,获得积分10
5分钟前
5分钟前
现代含芙发布了新的文献求助10
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
6分钟前
oscar完成签到,获得积分10
6分钟前
老石完成签到 ,获得积分10
6分钟前
尊敬背包完成签到,获得积分10
6分钟前
哭泣灯泡完成签到,获得积分10
6分钟前
小丽完成签到,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753871
求助须知:如何正确求助?哪些是违规求助? 3297262
关于积分的说明 10098204
捐赠科研通 3012094
什么是DOI,文献DOI怎么找? 1654458
邀请新用户注册赠送积分活动 788787
科研通“疑难数据库(出版商)”最低求助积分说明 753022