A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 机器学习 一般化 卷积(计算机科学) 图形 不变(物理) 人工神经网络 理论计算机科学 数学 心理学 数学分析 精神科 数学物理
作者
Zhongyi Zhang,Qing‐Hao Meng,Li-Cheng Jin,Han-Guang Wang,Hui-Rang Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122356-122356 被引量:34
标识
DOI:10.1016/j.eswa.2023.122356
摘要

Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
刚刚
动力小滋完成签到,获得积分10
1秒前
陌路发布了新的文献求助10
1秒前
CodeCraft应助安寒采纳,获得10
2秒前
热可可728完成签到,获得积分10
2秒前
ppp完成签到,获得积分10
3秒前
iffy发布了新的文献求助10
3秒前
董烁烨发布了新的文献求助10
4秒前
4秒前
董11发布了新的文献求助10
4秒前
JJ发布了新的文献求助10
4秒前
X519664508完成签到,获得积分0
5秒前
ld完成签到,获得积分10
5秒前
6秒前
浮浮世世发布了新的文献求助50
6秒前
冰峰完成签到,获得积分10
6秒前
小明应助mofan采纳,获得30
6秒前
iiing完成签到,获得积分10
6秒前
走着完成签到,获得积分10
7秒前
爱笑的蘑菇完成签到,获得积分10
7秒前
莫里完成签到,获得积分10
7秒前
Feiruxu完成签到,获得积分10
7秒前
赘婿应助小徐采纳,获得10
8秒前
Jasper应助青山采纳,获得10
8秒前
老水完成签到,获得积分10
9秒前
小桔青山完成签到,获得积分10
9秒前
笑点低战斗机完成签到,获得积分10
10秒前
finger完成签到,获得积分10
10秒前
sally_5202完成签到 ,获得积分10
11秒前
漂亮夏兰完成签到,获得积分10
11秒前
ertredffg完成签到,获得积分10
11秒前
小权拳的权完成签到,获得积分10
11秒前
badjack完成签到,获得积分10
11秒前
11秒前
852应助朴实的紫采纳,获得10
11秒前
Akim应助仲如萱采纳,获得10
11秒前
12秒前
12秒前
指已成殇应助红泥小火炉采纳,获得20
12秒前
领导范儿应助一把过采纳,获得10
14秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388001
求助须知:如何正确求助?哪些是违规求助? 4509881
关于积分的说明 14033262
捐赠科研通 4420771
什么是DOI,文献DOI怎么找? 2428439
邀请新用户注册赠送积分活动 1421106
关于科研通互助平台的介绍 1400293