A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 机器学习 一般化 卷积(计算机科学) 图形 不变(物理) 人工神经网络 理论计算机科学 数学 心理学 数学分析 精神科 数学物理
作者
Zhongyi Zhang,Qing‐Hao Meng,Li-Cheng Jin,Han-Guang Wang,Hui-Rang Hou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122356-122356 被引量:19
标识
DOI:10.1016/j.eswa.2023.122356
摘要

Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocobear完成签到 ,获得积分10
1秒前
mochalv123完成签到 ,获得积分10
2秒前
科研通AI5应助genova采纳,获得10
3秒前
追寻完成签到 ,获得积分10
5秒前
shann完成签到,获得积分10
7秒前
jiaying完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
even完成签到 ,获得积分0
14秒前
闪闪翼发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
bookgg完成签到 ,获得积分10
20秒前
海鑫王完成签到,获得积分20
21秒前
之后再说咯完成签到 ,获得积分10
22秒前
22秒前
少女徐必成完成签到 ,获得积分10
27秒前
手握灵珠常奋笔完成签到,获得积分10
28秒前
细心盼晴发布了新的文献求助10
29秒前
肖果完成签到 ,获得积分10
31秒前
sora完成签到,获得积分10
34秒前
闪闪翼完成签到,获得积分10
37秒前
38秒前
阿达完成签到 ,获得积分10
40秒前
苗条世德完成签到,获得积分10
41秒前
我睡觉的时候不困完成签到 ,获得积分10
42秒前
43秒前
genova发布了新的文献求助10
44秒前
56秒前
qyzhu完成签到,获得积分10
58秒前
ty完成签到 ,获得积分10
1分钟前
你的样子发布了新的文献求助10
1分钟前
大个应助林厌寻采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fjmelite完成签到 ,获得积分10
1分钟前
1分钟前
kkk完成签到 ,获得积分10
1分钟前
Aixia发布了新的文献求助30
1分钟前
苹果柜子完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910675
求助须知:如何正确求助?哪些是违规求助? 4186400
关于积分的说明 12999471
捐赠科研通 3953927
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093845