A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 机器学习 一般化 卷积(计算机科学) 图形 不变(物理) 人工神经网络 理论计算机科学 数学 心理学 数学分析 精神科 数学物理
作者
Zhongyi Zhang,Qing‐Hao Meng,Li-Cheng Jin,Han-Guang Wang,Hui-Rang Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122356-122356 被引量:53
标识
DOI:10.1016/j.eswa.2023.122356
摘要

Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋秋完成签到 ,获得积分10
刚刚
科研小白完成签到,获得积分10
刚刚
海人完成签到 ,获得积分10
2秒前
2秒前
LATP发布了新的文献求助10
3秒前
3秒前
4秒前
ikun0000完成签到,获得积分10
5秒前
王彤彤发布了新的文献求助10
5秒前
酒尚温完成签到 ,获得积分10
6秒前
song完成签到,获得积分10
6秒前
7秒前
刘佳宇完成签到,获得积分10
7秒前
67号发布了新的文献求助10
8秒前
ydby27完成签到,获得积分10
8秒前
西因应助上官从波采纳,获得10
8秒前
9秒前
长留完成签到 ,获得积分10
9秒前
轧贝葡胺完成签到,获得积分10
9秒前
成就的巨人完成签到 ,获得积分10
10秒前
hjy完成签到 ,获得积分10
12秒前
bkagyin应助阔达的梨愁采纳,获得10
12秒前
13秒前
段东洁发布了新的文献求助10
13秒前
领导范儿应助谦让的小龙采纳,获得10
13秒前
13秒前
搜集达人应助jiajiajia采纳,获得10
14秒前
Will完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
栗子完成签到,获得积分10
14秒前
LATP完成签到,获得积分20
17秒前
czzlancer完成签到,获得积分10
18秒前
小蒲完成签到 ,获得积分10
19秒前
19秒前
义气的酬海完成签到,获得积分10
19秒前
zhuling发布了新的文献求助10
19秒前
红箭烟雨完成签到,获得积分10
21秒前
阔达的梨愁完成签到,获得积分10
21秒前
21秒前
CrsCrsCrs完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685826
关于积分的说明 14839777
捐赠科研通 4674981
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471124