A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 机器学习 一般化 卷积(计算机科学) 图形 不变(物理) 人工神经网络 理论计算机科学 数学 心理学 数学分析 精神科 数学物理
作者
Zhongyi Zhang,Qing‐Hao Meng,Li-Cheng Jin,Han-Guang Wang,Hui-Rang Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122356-122356 被引量:13
标识
DOI:10.1016/j.eswa.2023.122356
摘要

Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我开始找你了完成签到,获得积分10
刚刚
123pc完成签到,获得积分10
刚刚
sybil发布了新的文献求助10
刚刚
眉宇方舟完成签到,获得积分10
刚刚
刚刚
Akim应助黄强采纳,获得10
1秒前
1秒前
不安分的King完成签到,获得积分10
2秒前
2秒前
mnjknm完成签到 ,获得积分10
2秒前
xxxxxxx发布了新的文献求助10
2秒前
李健的小迷弟应助EddyLalala采纳,获得30
3秒前
stepha完成签到,获得积分20
3秒前
在水一方应助颜凡桃采纳,获得10
3秒前
77完成签到,获得积分10
3秒前
3秒前
云醒发布了新的文献求助10
4秒前
xul279完成签到,获得积分10
4秒前
露露完成签到 ,获得积分10
4秒前
顾矜应助sybil采纳,获得10
4秒前
果ghj完成签到,获得积分10
4秒前
5秒前
MENG发布了新的文献求助10
5秒前
77发布了新的文献求助10
6秒前
呆萌忆文完成签到,获得积分10
6秒前
qiaocolate完成签到,获得积分10
7秒前
BLDYT发布了新的文献求助10
7秒前
辛勤凌旋发布了新的文献求助10
7秒前
爆米花应助Ade采纳,获得10
8秒前
闪闪完成签到 ,获得积分10
8秒前
坚定惜文发布了新的文献求助10
8秒前
猫咪老师应助疯狂的蛋挞采纳,获得30
9秒前
外向如冬发布了新的文献求助20
9秒前
坦率铃铛完成签到,获得积分10
9秒前
10秒前
踏实的烙发布了新的文献求助10
11秒前
安之完成签到,获得积分10
11秒前
11秒前
djr完成签到,获得积分10
12秒前
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227246
求助须知:如何正确求助?哪些是违规求助? 2875383
关于积分的说明 8190527
捐赠科研通 2542584
什么是DOI,文献DOI怎么找? 1372834
科研通“疑难数据库(出版商)”最低求助积分说明 646561
邀请新用户注册赠送积分活动 620994