亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 机器学习 一般化 卷积(计算机科学) 图形 不变(物理) 人工神经网络 理论计算机科学 数学 心理学 数学分析 精神科 数学物理
作者
Zhongyi Zhang,Qing‐Hao Meng,Li-Cheng Jin,Han-Guang Wang,Hui-Rang Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122356-122356 被引量:34
标识
DOI:10.1016/j.eswa.2023.122356
摘要

Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
yuan发布了新的文献求助10
14秒前
19秒前
yuan完成签到,获得积分10
21秒前
23秒前
懒癌晚期发布了新的文献求助10
27秒前
肥肥完成签到 ,获得积分10
28秒前
阳陽完成签到,获得积分10
39秒前
41秒前
万能图书馆应助小苏采纳,获得10
42秒前
勇敢的蝙蝠侠完成签到 ,获得积分10
50秒前
50秒前
52秒前
Whisper完成签到,获得积分10
56秒前
脑洞疼应助李幺幺采纳,获得10
56秒前
徐biao发布了新的文献求助10
58秒前
CipherSage应助徐biao采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
JIA完成签到 ,获得积分10
1分钟前
蛋泥完成签到,获得积分10
1分钟前
帅气的马里奥完成签到 ,获得积分10
1分钟前
无解应助mmyhn采纳,获得10
1分钟前
1分钟前
qqqq发布了新的文献求助10
1分钟前
1分钟前
小二郎应助qqqq采纳,获得10
1分钟前
Criminology34应助mmyhn采纳,获得10
1分钟前
杨天天完成签到 ,获得积分10
1分钟前
聪明怜阳发布了新的文献求助10
1分钟前
NiceSunnyDay完成签到 ,获得积分10
1分钟前
LG完成签到,获得积分20
1分钟前
平平无奇打工人完成签到 ,获得积分10
1分钟前
王二柱今天毕业了吗完成签到,获得积分10
1分钟前
blacktea完成签到,获得积分20
1分钟前
2分钟前
所所应助陈杰采纳,获得10
2分钟前
研友_nvGy2Z发布了新的文献求助10
2分钟前
llk完成签到 ,获得积分10
2分钟前
大胆的碧菡完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590407
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795170
捐赠科研通 4631521
什么是DOI,文献DOI怎么找? 2532696
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617