A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 机器学习 一般化 卷积(计算机科学) 图形 不变(物理) 人工神经网络 理论计算机科学 数学 心理学 数学分析 精神科 数学物理
作者
Zhongyi Zhang,Qing‐Hao Meng,Li-Cheng Jin,Han-Guang Wang,Hui-Rang Hou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122356-122356 被引量:19
标识
DOI:10.1016/j.eswa.2023.122356
摘要

Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
轻松盼烟完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
4秒前
轻松盼烟发布了新的文献求助10
4秒前
DEEP完成签到,获得积分10
5秒前
5秒前
优雅的沛春完成签到 ,获得积分10
8秒前
小勇仔发布了新的文献求助10
9秒前
外向语蝶完成签到,获得积分10
10秒前
10秒前
14秒前
lu完成签到,获得积分10
18秒前
苏卿发布了新的文献求助30
20秒前
慕青应助小洋采纳,获得10
21秒前
天天发布了新的文献求助10
22秒前
Owen应助小勇仔采纳,获得10
22秒前
超级纸飞机完成签到,获得积分10
22秒前
李小强完成签到,获得积分10
24秒前
娜娜完成签到,获得积分10
25秒前
恩善完成签到 ,获得积分10
26秒前
传奇3应助YoursSummer采纳,获得10
27秒前
29秒前
32秒前
小洋发布了新的文献求助10
34秒前
余健发布了新的文献求助10
34秒前
39秒前
SamuelLiu完成签到,获得积分10
40秒前
41秒前
清爽乐菱应助苏卿采纳,获得30
42秒前
量子星尘发布了新的文献求助10
46秒前
47秒前
天天发布了新的文献求助50
48秒前
小橘子发布了新的文献求助10
49秒前
50秒前
酷波er应助YoursSummer采纳,获得10
50秒前
若水完成签到,获得积分10
52秒前
52秒前
饼饼发布了新的文献求助10
53秒前
我是老大应助糟糕的铁锤采纳,获得50
55秒前
情怀应助满意的盼夏采纳,获得10
56秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182