亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 机器学习 一般化 卷积(计算机科学) 图形 不变(物理) 人工神经网络 理论计算机科学 数学 心理学 数学分析 精神科 数学物理
作者
Zhongyi Zhang,Qing‐Hao Meng,Li-Cheng Jin,Han-Guang Wang,Hui-Rang Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122356-122356 被引量:53
标识
DOI:10.1016/j.eswa.2023.122356
摘要

Electroencephalography (EEG) is capable of capturing the evocative neural information within the brain. As a result, it has been increasingly used for identifying neurological disorders, such as depression. In recent years, researchers have proposed deep-learning models for EEG-based depression detection and achieved good results. However, there are still some limitations in these models, as the varying importance across different EEG channels and the varying importance of different features within the same channel for each subject have not been adequately addressed. Furthermore, the variations in EEG data distributions among different subjects have not been fully considered, thereby compromising the universality of the model in cross-subject tasks. To address the aforementioned problems, we propose a model with a secondary subject partitioning and attention mechanism based on a graph convolution network (GCN). First, we present an attention module that can simultaneously concentrate on multiple channels with different features within each channel. Second, domain generalization based on adversarial training is added to the model, and a secondary subject partitioning method is proposed to group subjects with similar data distributions into the same domain with a shared domain label. This effectively reduces the number of domain labels and increases the data volume in each domain, thereby enhancing the domain generalization performance. Finally, in the depression recognition task, the improved domain generalization and attention modules collaborate to capture subject-invariant features. Prediction accuracies of 92.87% and 83.17% are respectively achieved on two public datasets, outperforming the state-of-the-art baseline models. Moreover, extensive ablation experiments further validate the effectiveness of each module in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的又槐完成签到,获得积分10
6秒前
11秒前
13秒前
史育川完成签到,获得积分10
14秒前
123发布了新的文献求助10
17秒前
史育川发布了新的文献求助10
19秒前
19秒前
852应助科研通管家采纳,获得10
22秒前
ceeray23应助科研通管家采纳,获得10
22秒前
ceeray23应助科研通管家采纳,获得10
22秒前
归尘应助科研通管家采纳,获得10
22秒前
体贴花卷发布了新的文献求助10
29秒前
韩国辉完成签到 ,获得积分10
29秒前
ucas大菠萝完成签到,获得积分10
31秒前
搜集达人应助123采纳,获得10
33秒前
霏霏不是菲菲完成签到,获得积分20
36秒前
40秒前
GKPFT完成签到,获得积分10
41秒前
BowieHuang应助GKPFT采纳,获得10
44秒前
44秒前
50秒前
ybk666完成签到,获得积分10
52秒前
53秒前
852应助Hou采纳,获得10
58秒前
赘婿应助体贴花卷采纳,获得10
1分钟前
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
搜集达人应助世良采纳,获得10
1分钟前
1分钟前
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
1分钟前
daidai发布了新的文献求助10
1分钟前
哈哈哈开开心心完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助VV2001采纳,获得10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
daidai完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399