Utilizing ablation volume for calibration in LA-ICP-MS mapping to address variations in ablation rates within and between matrices

化学 校准 烧蚀 体积热力学 分析化学(期刊) 激光烧蚀 基质(化学分析) 质谱法 光学 激光器 色谱法 物理 量子力学 统计 数学 工程类 航空航天工程
作者
Kristina Mervič,Johannes T. van Elteren,Marjan Bele,Martin Šala
出处
期刊:Talanta [Elsevier]
卷期号:269: 125379-125379
标识
DOI:10.1016/j.talanta.2023.125379
摘要

Quantification in 2D LA-ICP-MS mapping generally requires matrix-matched standards to minimize issues related to elemental fractionation. In addition, internal standardization is commonly applied to correct for instrumental drift and fluctuation, whereas also differences in ablated mass can be rectified for samples that cannot be sectioned and subjected to total ablation. However, it is crucial that the internal standard element is homogeneously distributed in the sample and that the laser light absorptivity is uniform over the surface. As in practice these requirements are often not met, this work will focus on correction of ablation rate differences within/between samples and standards by normalizing the element maps using the associated ablation volume per pixel as measured by optical profilometry. Due to the volume correction approach the element concentrations are no longer defined as mass per mass concentrations (in μg g−1) but by mass per volume concentrations (in μg cm−3), which can be interconverted in case matrix densities are known. The findings show that ablation volume-aided calibration yields more accurate element concentrations in 2D LA-ICP-MS maps for a decorative glass with highly varying elemental concentrations (murrina). This research presents a warning that if there are variations in ablation rates between samples and standards within and across matrices, even when their sensitivities are the same, generic LA-ICP-MS calibration protocols may not accurately depict the actual element concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助唉呦嘿采纳,获得10
刚刚
1秒前
Jenny应助觅桃乌龙采纳,获得10
1秒前
JL完成签到,获得积分10
2秒前
2秒前
123完成签到,获得积分10
2秒前
赘婿应助eric曾采纳,获得10
3秒前
3秒前
善学以致用应助小虎采纳,获得30
3秒前
lb发布了新的文献求助10
3秒前
自由的笑容完成签到,获得积分10
3秒前
4秒前
4秒前
mammoth完成签到,获得积分10
4秒前
科研通AI5应助仄兀采纳,获得10
5秒前
5秒前
5秒前
fishhh完成签到,获得积分10
5秒前
ruxing应助胖豆采纳,获得10
6秒前
good完成签到,获得积分10
6秒前
prosperp应助科研通管家采纳,获得10
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
sweetbearm应助科研通管家采纳,获得10
6秒前
1221211应助科研通管家采纳,获得10
6秒前
6秒前
liudiqiu应助科研通管家采纳,获得10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得30
7秒前
7秒前
欣慰友梅发布了新的文献求助10
7秒前
Serendipity应助科研通管家采纳,获得20
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
今后应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762