Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method

光伏系统 光伏并网发电系统 功率(物理) 随机性 太阳能 电力系统 电气工程 计算机科学 工程类 最大功率点跟踪 汽车工程 物理 数学 电压 统计 逆变器 量子力学
作者
Hu Wang,Lei Mao,Heng Zhang,Qiang Wu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:353: 122138-122138 被引量:2
标识
DOI:10.1016/j.apenergy.2023.122138
摘要

In the grid-connected photovoltaic system (GPVS), due to characteristics of fluctuation and intermittency for photovoltaic solar power, and high randomness for electric load, it is of great difficulty for integrating photovoltaic solar power into power grid. Therefore, an accurate prediction of short-term electric load and photovoltaic solar power is of great importance for balancing supply and demand. Currently, numerous isolated models about the forecasting of electric load and photovoltaic solar power have emerged, while the coupling effect between them has been hardly considered and lower stability of existing methods brings great difficulty in providing reliable predictions at practical applications. To address this gap, this paper proposes an interpretable multi-prediction model for short-term (day-ahead) electric load and photovoltaic solar power forecasting. In the framework, a non-parametric functional principal component analysis (FPCA) is constructed to extract the overall trend and identify dominant modes of variation in the daily electric load and photovoltaic solar power data. Furthermore, state transition matrix is proposed to comprehensively interpret the coupling effect, with which a novel multi-prediction strategy that takes advantage of coupling effect is further introduced, where the Maximum Likelihood Estimation (MLE) is employed to estimate unknown parameters. Moreover, data from California Independent System Operator (ISO) is utilized to investigate the performance of proposed method, and its results are compared with those from other widely-used techniques. Results show that the proposed method can increase prediction accuracy of electric load and photovoltaic solar power by 16.84% and 10.57%, respectively, with narrow fluctuations and reasonable computational cost (211.11 s), demonstrating that it can provide better predictions in terms of prediction accuracy, stability and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq发布了新的文献求助10
刚刚
刚刚
冷静的小虾米完成签到 ,获得积分10
刚刚
lxcy0612完成签到,获得积分10
刚刚
NNUsusan发布了新的文献求助10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
momo应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Yuying完成签到 ,获得积分10
3秒前
3秒前
he完成签到,获得积分10
3秒前
滕遥完成签到,获得积分10
4秒前
bkagyin应助zhan采纳,获得10
4秒前
HEANZ完成签到,获得积分10
4秒前
拼搏的飞薇完成签到,获得积分10
5秒前
明明发布了新的文献求助10
5秒前
AIMS完成签到,获得积分10
5秒前
娃哈哈发布了新的文献求助10
6秒前
赘婿应助moon689采纳,获得10
6秒前
领导范儿应助德鲁大叔采纳,获得10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620