Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method

光伏系统 光伏并网发电系统 功率(物理) 随机性 太阳能 电力系统 电气工程 计算机科学 工程类 最大功率点跟踪 汽车工程 物理 数学 电压 统计 逆变器 量子力学
作者
Hu Wang,Lei Mao,Heng Zhang,Qiang Wu
出处
期刊:Applied Energy [Elsevier]
卷期号:353: 122138-122138 被引量:2
标识
DOI:10.1016/j.apenergy.2023.122138
摘要

In the grid-connected photovoltaic system (GPVS), due to characteristics of fluctuation and intermittency for photovoltaic solar power, and high randomness for electric load, it is of great difficulty for integrating photovoltaic solar power into power grid. Therefore, an accurate prediction of short-term electric load and photovoltaic solar power is of great importance for balancing supply and demand. Currently, numerous isolated models about the forecasting of electric load and photovoltaic solar power have emerged, while the coupling effect between them has been hardly considered and lower stability of existing methods brings great difficulty in providing reliable predictions at practical applications. To address this gap, this paper proposes an interpretable multi-prediction model for short-term (day-ahead) electric load and photovoltaic solar power forecasting. In the framework, a non-parametric functional principal component analysis (FPCA) is constructed to extract the overall trend and identify dominant modes of variation in the daily electric load and photovoltaic solar power data. Furthermore, state transition matrix is proposed to comprehensively interpret the coupling effect, with which a novel multi-prediction strategy that takes advantage of coupling effect is further introduced, where the Maximum Likelihood Estimation (MLE) is employed to estimate unknown parameters. Moreover, data from California Independent System Operator (ISO) is utilized to investigate the performance of proposed method, and its results are compared with those from other widely-used techniques. Results show that the proposed method can increase prediction accuracy of electric load and photovoltaic solar power by 16.84% and 10.57%, respectively, with narrow fluctuations and reasonable computational cost (211.11 s), demonstrating that it can provide better predictions in terms of prediction accuracy, stability and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Hello应助科研通管家采纳,获得10
1秒前
mhl11应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
jia完成签到,获得积分10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
mhl11应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
mhl11应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
bazinga应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
mhl11应助科研通管家采纳,获得10
3秒前
Ava应助彭佳丽采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
asd发布了新的文献求助30
3秒前
可靠幼旋应助科研通管家采纳,获得20
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
orixero应助屎味烤地瓜采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
今后应助机灵的向日葵采纳,获得10
4秒前
4秒前
丘比特应助73113km采纳,获得10
4秒前
4秒前
123关闭了123文献求助
4秒前
4秒前
zxy发布了新的文献求助10
4秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272