已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wrapped phase aberration compensation using deep learning in digital holographic microscopy

泽尼克多项式 相(物质) 计算机科学 数字全息显微术 补偿(心理学) 卷积神经网络 数字全息术 光学 全息术 人工智能 相位恢复 噪音(视频) 计算机视觉 算法 物理 傅里叶变换 波前 图像(数学) 心理学 量子力学 精神分析
作者
Liu Huang,J.D. van der Tang,Liping Yan,Jiayi Chen,Benyong Chen
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:123 (14) 被引量:8
标识
DOI:10.1063/5.0166210
摘要

In digital holographic microscopy (DHM), phase aberration compensation is a general problem for improving the accuracy of quantitative phase measurement. Current phase aberration compensation methods mainly focus on the continuous phase map after performing the phase filtering and unwrapping to the wrapped phase map. However, for the wrapped phase map, when larger phase aberrations make the fringes too dense or make the noise frequency features indistinct, either spatial-domain or frequency-domain based filtering methods might be less effective, resulting in phase unwrapping anomalies and inaccurate aberration compensation. In order to solve this problem, we propose and design a strategy to advance the phase aberration compensation to the wrapped phase map with deep learning. As the phase aberration in DHM can be characterized by the Zernike coefficients, CNN (Convolutional Neural Network) is trained by using massive simulated wrapped phase maps as network inputs and their corresponding Zernike coefficients as labels. Then the trained CNN is used to directly extract the Zernike coefficients and compensate the phase aberration of the wrapped phase before phase filtering and unwrapping. The simulation results of different phase aberrations and noise levels and measurement results of MEMS chip and biological tissue samples show that, compared with current algorithms that perform phase aberration compensation after phase unwrapping, the proposed method can extract the Zernike coefficients more accurately, improve the phase data quality of the consequent phase filtering greatly, and achieve more accurate and reliable sample profile reconstruction. This phase aberration compensation strategy for the wrapped phase will have great potential in the applications of DHM quantitative phase imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助10
1秒前
yangyajie发布了新的文献求助30
1秒前
小巧尔蓝发布了新的文献求助20
1秒前
张三李四王麻子完成签到 ,获得积分10
2秒前
王博士发布了新的文献求助80
4秒前
NexusExplorer应助曾经冰露采纳,获得10
4秒前
HaHa完成签到,获得积分10
4秒前
4秒前
igf完成签到,获得积分10
5秒前
6秒前
NexusExplorer应助yyc采纳,获得10
6秒前
stone完成签到 ,获得积分20
6秒前
无糖美式发布了新的文献求助10
8秒前
8秒前
0000完成签到 ,获得积分10
9秒前
所所应助阿狸贱贱采纳,获得10
9秒前
lsybf完成签到,获得积分10
10秒前
ina完成签到,获得积分10
11秒前
小羊发布了新的文献求助10
12秒前
12秒前
111122223333发布了新的文献求助10
12秒前
Ali990323发布了新的文献求助10
15秒前
15秒前
17秒前
18秒前
脑洞疼应助不器君采纳,获得10
19秒前
19秒前
巫马尔槐发布了新的文献求助10
22秒前
23秒前
24秒前
bluee完成签到,获得积分10
24秒前
25秒前
27秒前
徐逊发布了新的文献求助10
27秒前
sci发布了新的文献求助10
28秒前
msk完成签到,获得积分10
28秒前
万能图书馆应助小萌兽采纳,获得10
28秒前
今后应助疯狂的石头采纳,获得10
29秒前
科研通AI6应助yangyajie采纳,获得20
29秒前
烙饼发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339