Wrapped phase aberration compensation using deep learning in digital holographic microscopy

泽尼克多项式 相(物质) 计算机科学 数字全息显微术 补偿(心理学) 卷积神经网络 数字全息术 光学 全息术 人工智能 相位恢复 噪音(视频) 计算机视觉 算法 物理 傅里叶变换 波前 图像(数学) 心理学 量子力学 精神分析
作者
Liu Huang,J.D. van der Tang,Liping Yan,Jiayi Chen,Benyong Chen
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:123 (14) 被引量:5
标识
DOI:10.1063/5.0166210
摘要

In digital holographic microscopy (DHM), phase aberration compensation is a general problem for improving the accuracy of quantitative phase measurement. Current phase aberration compensation methods mainly focus on the continuous phase map after performing the phase filtering and unwrapping to the wrapped phase map. However, for the wrapped phase map, when larger phase aberrations make the fringes too dense or make the noise frequency features indistinct, either spatial-domain or frequency-domain based filtering methods might be less effective, resulting in phase unwrapping anomalies and inaccurate aberration compensation. In order to solve this problem, we propose and design a strategy to advance the phase aberration compensation to the wrapped phase map with deep learning. As the phase aberration in DHM can be characterized by the Zernike coefficients, CNN (Convolutional Neural Network) is trained by using massive simulated wrapped phase maps as network inputs and their corresponding Zernike coefficients as labels. Then the trained CNN is used to directly extract the Zernike coefficients and compensate the phase aberration of the wrapped phase before phase filtering and unwrapping. The simulation results of different phase aberrations and noise levels and measurement results of MEMS chip and biological tissue samples show that, compared with current algorithms that perform phase aberration compensation after phase unwrapping, the proposed method can extract the Zernike coefficients more accurately, improve the phase data quality of the consequent phase filtering greatly, and achieve more accurate and reliable sample profile reconstruction. This phase aberration compensation strategy for the wrapped phase will have great potential in the applications of DHM quantitative phase imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
马不停蹄完成签到,获得积分10
3秒前
听话的豆芽完成签到,获得积分10
3秒前
3秒前
大模型应助keyanyan采纳,获得10
4秒前
科研通AI5应助亲亲紫荆采纳,获得30
4秒前
司空豁应助宇小姐采纳,获得10
5秒前
5秒前
5秒前
庆幸发布了新的文献求助10
6秒前
YF_1987发布了新的文献求助10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
赘婿应助愤怒的梦柏采纳,获得10
8秒前
领导范儿应助KD357采纳,获得10
8秒前
嘻嘻嘻发布了新的文献求助10
8秒前
8秒前
9秒前
文刀发布了新的文献求助10
9秒前
lll发布了新的文献求助20
9秒前
zhe完成签到 ,获得积分10
9秒前
陈惠卿88完成签到,获得积分10
10秒前
共享精神应助木木三采纳,获得10
10秒前
10秒前
考博上岸26完成签到 ,获得积分10
10秒前
华仔应助xunoverflow采纳,获得10
11秒前
12秒前
FeLaN发布了新的文献求助10
12秒前
bkagyin应助庆幸采纳,获得10
12秒前
李雩完成签到 ,获得积分10
12秒前
13秒前
angelalxj关注了科研通微信公众号
13秒前
13秒前
小栩发布了新的文献求助10
14秒前
blank发布了新的文献求助10
14秒前
和谐念寒发布了新的文献求助10
15秒前
15秒前
tiantian发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343