Two New Functional Inequalities and Their Application to the Eventual Smoothness of Solutions to a Chemotaxis-Navier–Stokes System with Rotational Flux
平滑度
趋化性
焊剂(冶金)
不平等
物理
数学分析
数学
化学
生物化学
受体
有机化学
作者
Frederic Heihoff
出处
期刊:Siam Journal on Mathematical Analysis [Society for Industrial and Applied Mathematics] 日期:2023-11-07卷期号:55 (6): 7113-7154被引量:1
.We prove two new functional inequalities of the forms \(\int_G \varphi (\psi - \overline{\psi }) \leq \frac{1}{a}\int_G \psi \ln (\frac{\;\psi \;}{ \overline{\psi }}) + \frac{a}{4\beta_0} \left\{ \int_G \psi \right\}\int_G|\nabla \varphi |^2\) and \(\int_G \psi \ln (\frac{\;\psi \;}{ \overline{\psi }}) \leq \frac{1}{\beta_0} \{ \int_G \psi \}\int_G |\nabla \ln (\psi )|^2\) for any finitely connected, bounded \(C^2\)-domain \(G \subseteq \mathbb{R}^2\), a constant \(\beta_0 \gt 0\), any \(a \gt 0\), and sufficiently regular functions \(\varphi\), \(\psi\). We then illustrate their usefulness by proving long time stabilization and eventual smoothness properties for certain generalized solutions to the chemotaxis-Navier–Stokes system \(\{ n_t + u \cdot \nabla n = \Delta n - \nabla \cdot (nS(x,n,c) \nabla c); c_t + u\cdot \nabla c = \Delta c - n f(c); u_t + (u\cdot \nabla ) u = \Delta u + \nabla P+n \nabla \phi, \nabla \cdot u=0 \}\) on a smooth, bounded, convex domain \(\Omega \subseteq \mathbb{R}^2\) with no-flux boundary conditions for \(n\) and \(c\) as well as a Dirichlet boundary condition for \(u\). We further allow for a general chemotactic sensitivity \(S\) attaining values in \(\mathbb{R}^{2\times 2}\) as opposed to a scalar one.Keywordsfunctional inequalitiesvariational methodsTrudinger–Moser inequalityNavier–Stokeschemotaxisgeneralized solutionseventual smoothnessMSC codes35K5535A2335A1535J2035D3035Q9235Q3592C17