Hyperspectral Image Classification Using Geometric Spatial–Spectral Feature Integration: A Class Incremental Learning Approach

高光谱成像 计算机科学 人工智能 遗忘 班级(哲学) 模式识别(心理学) 特征(语言学) 过程(计算) 机器学习 遥感 地理 语言学 操作系统 哲学
作者
Jing Bai,Ruotong Liu,Hai‐Sheng Zhao,Zhu Xiao,Zheng Chen,Wei Shi,Yong Xiong,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:5
标识
DOI:10.1109/tgrs.2023.3333005
摘要

Hyperspectral image classification (HSIC) has attracted widespread attention due to its important application in environment alterations and geophysical disaster monitoring. However, surface cultivation is not static as time passes, which leads to different hyperspectral images information collected from the same area at different time periods. Therefore, researchers are currently eager to construct a HSIC model that continuously acquires new classes of data. During the continuous learning process, the model is expected to not only effective in extracting unique spatial-spectral features of the hyperspectral image, but also ensures the ability to maintain the old classes knowledge while learning new data. To achieve this purpose, we propose a method which based on geometric spatial-spectral feature integration network with class incremental learning (GS2FIN-CIL) framework in continuous learning to make the model adaptable to new classes data and not overly forgetting the old classes knowledge during the training process. We conduct extensive experiments with the proposed GS2FIN-CIL method on widely-used hyperspectral datasets including Indian Pines, PaviaU and Salinas. The experimental results show that our GS2FIN-CIL method can achieve significantly improved results compared to current state-of-the-art class incremental learning methods, allowing for efficient adaptation and utilization of spatial-spectral features in processing new classes of hyperspectral images and alleviating the problem of catastrophic forgetting of learned old classes knowledge. The GS2FIN-CIL method could be successfully applied to the challenge of adding new classes data in HSIC task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓希静完成签到,获得积分10
刚刚
wangxiaoyating完成签到,获得积分10
1秒前
星星发布了新的文献求助10
1秒前
珍惜完成签到,获得积分0
1秒前
huhu完成签到 ,获得积分10
1秒前
1900完成签到,获得积分10
2秒前
单纯乞完成签到,获得积分10
3秒前
上上谦完成签到,获得积分10
5秒前
学术底层fw完成签到,获得积分10
6秒前
7秒前
丘比特应助茜茜王子采纳,获得10
7秒前
啦啦啦发布了新的文献求助10
7秒前
_Q七完成签到,获得积分10
8秒前
Jingshuiliushen完成签到,获得积分10
8秒前
小二郎应助胖胖采纳,获得10
9秒前
ZSQ完成签到,获得积分10
9秒前
9秒前
lh完成签到 ,获得积分10
10秒前
excellent_shit完成签到,获得积分10
10秒前
汉天完成签到,获得积分10
11秒前
聪慧的迎夏完成签到,获得积分10
11秒前
De.完成签到 ,获得积分10
11秒前
orixero应助wang采纳,获得10
12秒前
Porifera完成签到,获得积分10
12秒前
13秒前
椰汁发布了新的文献求助10
13秒前
谦让新竹完成签到,获得积分10
13秒前
小迪完成签到 ,获得积分10
13秒前
徐京墨完成签到,获得积分10
14秒前
务实映之完成签到,获得积分10
14秒前
科研娟发布了新的文献求助30
14秒前
小凡凡完成签到,获得积分10
15秒前
whisper完成签到,获得积分10
15秒前
浪费完成签到 ,获得积分10
16秒前
LL完成签到,获得积分10
16秒前
Pipper完成签到,获得积分10
17秒前
蔡蔡不菜菜完成签到,获得积分10
17秒前
xiuqing董完成签到,获得积分10
17秒前
17秒前
大蜥蜴完成签到,获得积分10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733619
求助须知:如何正确求助?哪些是违规求助? 3277836
关于积分的说明 10004743
捐赠科研通 2993867
什么是DOI,文献DOI怎么找? 1642881
邀请新用户注册赠送积分活动 780666
科研通“疑难数据库(出版商)”最低求助积分说明 748950