An interactive nuclei segmentation framework with Voronoi diagrams and weighted convex difference for cervical cancer pathology images

分割 沃罗诺图 人工智能 计算机科学 模式识别(心理学) 可解释性 直方图 图像分割 图像(数学) 数学 几何学
作者
Lin Yang,Yuanyuan Lei,Zhenxing Huang,Mengxiao Geng,Zhou Liu,Baijie Wang,Dehong Luo,Wenting Huang,Dong Liang,Zhi‐Feng Pang,Zhanli Hu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (2): 025021-025021 被引量:1
标识
DOI:10.1088/1361-6560/ad0d44
摘要

Abstract Objective. Nuclei segmentation is crucial for pathologists to accurately classify and grade cancer. However, this process faces significant challenges, such as the complex background structures in pathological images, the high-density distribution of nuclei, and cell adhesion. Approach. In this paper, we present an interactive nuclei segmentation framework that increases the precision of nuclei segmentation. Our framework incorporates expert monitoring to gather as much prior information as possible and accurately segment complex nucleus images through limited pathologist interaction, where only a small portion of the nucleus locations in each image are labeled. The initial contour is determined by the Voronoi diagram generated from the labeled points, which is then input into an optimized weighted convex difference model to regularize partition boundaries in an image. Specifically, we provide theoretical proof of the mathematical model, stating that the objective function monotonically decreases. Furthermore, we explore a postprocessing stage that incorporates histograms, which are simple and easy to handle and prevent arbitrariness and subjectivity in individual choices. Main results. To evaluate our approach, we conduct experiments on both a cervical cancer dataset and a nasopharyngeal cancer dataset. The experimental results demonstrate that our approach achieves competitive performance compared to other methods. Significance. The Voronoi diagram in the paper serves as prior information for the active contour, providing positional information for individual cells. Moreover, the active contour model achieves precise segmentation results while offering mathematical interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
King完成签到 ,获得积分10
刚刚
1秒前
瘦瘦凌晴发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI5应助Bown采纳,获得10
2秒前
2秒前
3秒前
情怀应助將雨采纳,获得10
4秒前
4秒前
欣喜从波发布了新的文献求助10
6秒前
ychen发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
rain完成签到,获得积分10
10秒前
CipherSage应助无限的含蕾采纳,获得10
10秒前
10秒前
体贴的洋葱完成签到,获得积分10
11秒前
11秒前
包容的睫毛膏完成签到,获得积分10
12秒前
小困包完成签到 ,获得积分10
12秒前
香蕉觅云应助六神曲采纳,获得10
13秒前
sonya1122完成签到,获得积分10
13秒前
虾滑丸子发布了新的文献求助10
13秒前
13秒前
sanL发布了新的文献求助10
13秒前
NicoLi发布了新的文献求助10
14秒前
15秒前
希望天下0贩的0应助qyh采纳,获得10
15秒前
jyu发布了新的文献求助10
15秒前
16秒前
淡然亦云完成签到 ,获得积分20
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
萌新完成签到 ,获得积分10
18秒前
聪明日记本完成签到,获得积分10
19秒前
丘比特应助1111采纳,获得10
19秒前
Orange应助咸鱼不翻身采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088822
求助须知:如何正确求助?哪些是违规求助? 4303677
关于积分的说明 13412175
捐赠科研通 4129366
什么是DOI,文献DOI怎么找? 2261427
邀请新用户注册赠送积分活动 1265480
关于科研通互助平台的介绍 1200010