An interactive nuclei segmentation framework with Voronoi diagrams and weighted convex difference for cervical cancer pathology images

分割 沃罗诺图 人工智能 计算机科学 模式识别(心理学) 可解释性 直方图 图像分割 图像(数学) 数学 几何学
作者
Lin Yang,Yuanyuan Lei,Zhenxing Huang,Mengxiao Geng,Zhou Liu,Baijie Wang,Dehong Luo,Wenting Huang,Dong Liang,Zhi‐Feng Pang,Zhanli Hu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (2): 025021-025021 被引量:1
标识
DOI:10.1088/1361-6560/ad0d44
摘要

Abstract Objective. Nuclei segmentation is crucial for pathologists to accurately classify and grade cancer. However, this process faces significant challenges, such as the complex background structures in pathological images, the high-density distribution of nuclei, and cell adhesion. Approach. In this paper, we present an interactive nuclei segmentation framework that increases the precision of nuclei segmentation. Our framework incorporates expert monitoring to gather as much prior information as possible and accurately segment complex nucleus images through limited pathologist interaction, where only a small portion of the nucleus locations in each image are labeled. The initial contour is determined by the Voronoi diagram generated from the labeled points, which is then input into an optimized weighted convex difference model to regularize partition boundaries in an image. Specifically, we provide theoretical proof of the mathematical model, stating that the objective function monotonically decreases. Furthermore, we explore a postprocessing stage that incorporates histograms, which are simple and easy to handle and prevent arbitrariness and subjectivity in individual choices. Main results. To evaluate our approach, we conduct experiments on both a cervical cancer dataset and a nasopharyngeal cancer dataset. The experimental results demonstrate that our approach achieves competitive performance compared to other methods. Significance. The Voronoi diagram in the paper serves as prior information for the active contour, providing positional information for individual cells. Moreover, the active contour model achieves precise segmentation results while offering mathematical interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
solo4bird完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
奶茶完成签到,获得积分10
2秒前
粗暴的醉卉完成签到 ,获得积分10
2秒前
小二郎应助OPV采纳,获得10
2秒前
3秒前
3秒前
可乐完成签到 ,获得积分10
3秒前
4秒前
leeSongha完成签到 ,获得积分10
4秒前
5秒前
LEle发布了新的文献求助10
5秒前
情怀应助科研小白采纳,获得10
6秒前
7秒前
Jack祺完成签到 ,获得积分10
8秒前
8秒前
小二郎应助Darling采纳,获得10
8秒前
周至发布了新的文献求助30
9秒前
二枫忆桑完成签到,获得积分10
9秒前
别叫我吃饭饭饭完成签到 ,获得积分10
9秒前
9秒前
唐文硕发布了新的文献求助10
9秒前
9秒前
郭郭发布了新的文献求助10
10秒前
小马甲应助zzzpf采纳,获得10
11秒前
13秒前
华仔应助CXJ采纳,获得10
13秒前
wangzilu发布了新的文献求助50
13秒前
郭亮完成签到 ,获得积分20
13秒前
ghx发布了新的文献求助10
15秒前
顾矜应助ballball233采纳,获得10
15秒前
wang11完成签到,获得积分10
16秒前
初空月儿完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助30
17秒前
爆米花应助管夜白采纳,获得10
17秒前
寒冷寻桃发布了新的文献求助10
18秒前
xcltzh2517完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932