An interactive nuclei segmentation framework with Voronoi diagrams and weighted convex difference for cervical cancer pathology images

分割 沃罗诺图 人工智能 计算机科学 模式识别(心理学) 可解释性 直方图 图像分割 图像(数学) 数学 几何学
作者
Lin Yang,Yuanyuan Lei,Zhenxing Huang,Mengxiao Geng,Zhou Liu,Baijie Wang,Dehong Luo,Wenting Huang,Dong Liang,Zhi‐Feng Pang,Zhanli Hu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (2): 025021-025021 被引量:1
标识
DOI:10.1088/1361-6560/ad0d44
摘要

Abstract Objective. Nuclei segmentation is crucial for pathologists to accurately classify and grade cancer. However, this process faces significant challenges, such as the complex background structures in pathological images, the high-density distribution of nuclei, and cell adhesion. Approach. In this paper, we present an interactive nuclei segmentation framework that increases the precision of nuclei segmentation. Our framework incorporates expert monitoring to gather as much prior information as possible and accurately segment complex nucleus images through limited pathologist interaction, where only a small portion of the nucleus locations in each image are labeled. The initial contour is determined by the Voronoi diagram generated from the labeled points, which is then input into an optimized weighted convex difference model to regularize partition boundaries in an image. Specifically, we provide theoretical proof of the mathematical model, stating that the objective function monotonically decreases. Furthermore, we explore a postprocessing stage that incorporates histograms, which are simple and easy to handle and prevent arbitrariness and subjectivity in individual choices. Main results. To evaluate our approach, we conduct experiments on both a cervical cancer dataset and a nasopharyngeal cancer dataset. The experimental results demonstrate that our approach achieves competitive performance compared to other methods. Significance. The Voronoi diagram in the paper serves as prior information for the active contour, providing positional information for individual cells. Moreover, the active contour model achieves precise segmentation results while offering mathematical interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的沛蓝完成签到,获得积分10
刚刚
刚刚
小巧日记本完成签到,获得积分10
刚刚
7275XXX完成签到,获得积分10
1秒前
我是老大应助xwc采纳,获得30
2秒前
123完成签到,获得积分10
3秒前
ChangSZ应助研友_8oYg4n采纳,获得10
3秒前
思源应助暴躁的安柏采纳,获得10
4秒前
4秒前
李繁蕊发布了新的文献求助10
4秒前
Evelyn关注了科研通微信公众号
5秒前
5秒前
WKY完成签到,获得积分10
6秒前
manan发布了新的文献求助10
6秒前
亮亮关注了科研通微信公众号
6秒前
yuming完成签到,获得积分10
6秒前
7秒前
Curllen完成签到,获得积分10
7秒前
lzj001983发布了新的文献求助10
7秒前
7秒前
shouyu29应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
立波完成签到,获得积分10
8秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
shouyu29应助科研通管家采纳,获得10
9秒前
许win应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740