An interactive nuclei segmentation framework with Voronoi diagrams and weighted convex difference for cervical cancer pathology images

分割 沃罗诺图 人工智能 计算机科学 模式识别(心理学) 可解释性 直方图 图像分割 图像(数学) 数学 几何学
作者
Lin Yang,Yuanyuan Lei,Zhenxing Huang,Mengxiao Geng,Zhou Liu,Baijie Wang,Dingcun Luo,Wenting Huang,Dong Liang,Zhi-Feng Pang,Zhanli Hu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad0d44
摘要

Abstract Objective.
Nuclei segmentation is crucial for pathologists to accurately classify and grade cancer. However, this process faces significant challenges, such as the complex background structures in pathological images, the high-density distribution of nuclei, and cell adhesion. 
Approach.
In this paper, we present an interactive nuclei segmentation framework that increases the precision of nuclei segmentation. Our framework incorporates expert monitoring to gather as much prior information as possible and accurately segment complex nucleus images through limited pathologist interaction, where only a small portion of the nucleus locations in each image are labeled. The initial contour is determined by the Voronoi diagram generated from the labeled points, which is then input into an optimized weighted convex difference model to regularize partition boundaries in an image. Specifically, we provide theoretical proof of the mathematical model, stating that the objective function monotonically decreases. Furthermore, we explore a postprocessing stage that incorporates histograms, which are simple and easy to handle and prevent arbitrariness and subjectivity in individual choices. 
Main results. 
To evaluate our approach, we conduct experiments on both a cervical cancer dataset and a nasopharyngeal cancer dataset. The experimental results demonstrate that our approach achieves competitive performance compared to other methods. 
Significance. 
The Voronoi diagram in the paper serves as prior information for the active contour, providing positional information for individual cells. Moreover, the active contour model achieves precise segmentation results while offering mathematical interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助海鸥海鸥采纳,获得10
刚刚
李凌霄发布了新的文献求助10
2秒前
ESLG发布了新的文献求助10
2秒前
Chemvenus完成签到,获得积分10
2秒前
Hello应助娃哈哈采纳,获得10
5秒前
bkagyin应助DW采纳,获得10
5秒前
Chemvenus发布了新的文献求助20
6秒前
Orange应助爱学习采纳,获得10
8秒前
Jia77发布了新的文献求助10
8秒前
喔喔完成签到,获得积分10
9秒前
Jasper应助Jtiger采纳,获得10
9秒前
传奇3应助笑一笑采纳,获得10
11秒前
12秒前
J_C_Van完成签到,获得积分10
13秒前
NexusExplorer应助研友_8Kedgn采纳,获得10
13秒前
小雨o0发布了新的文献求助10
15秒前
搞怪的巧荷关注了科研通微信公众号
15秒前
36456657应助www采纳,获得10
16秒前
英姑应助www采纳,获得10
16秒前
18秒前
18秒前
李凌霄完成签到,获得积分10
18秒前
上官若男应助酱紫采纳,获得10
18秒前
adamchris发布了新的文献求助10
19秒前
Jia77完成签到,获得积分10
19秒前
19秒前
lijing完成签到,获得积分10
20秒前
简单的迎彤完成签到,获得积分10
21秒前
111个1完成签到,获得积分10
21秒前
无奈的傲易完成签到,获得积分10
21秒前
哭泣忆文完成签到,获得积分10
22秒前
23秒前
研友_8Kedgn发布了新的文献求助10
25秒前
25秒前
彭于晏应助小雨o0采纳,获得10
25秒前
25秒前
卞卞完成签到,获得积分10
25秒前
Jtiger发布了新的文献求助10
25秒前
Ava应助大喜采纳,获得10
25秒前
BBBBB完成签到,获得积分10
26秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338512
求助须知:如何正确求助?哪些是违规求助? 2966704
关于积分的说明 8626210
捐赠科研通 2645895
什么是DOI,文献DOI怎么找? 1448916
科研通“疑难数据库(出版商)”最低求助积分说明 671293
邀请新用户注册赠送积分活动 659959