An interactive nuclei segmentation framework with Voronoi diagrams and weighted convex difference for cervical cancer pathology images

分割 沃罗诺图 人工智能 计算机科学 模式识别(心理学) 可解释性 直方图 图像分割 图像(数学) 数学 几何学
作者
Lin Yang,Yuanyuan Lei,Zhenxing Huang,Mengxiao Geng,Zhou Liu,Baijie Wang,Dehong Luo,Wenting Huang,Dong Liang,Zhi‐Feng Pang,Zhanli Hu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (2): 025021-025021 被引量:1
标识
DOI:10.1088/1361-6560/ad0d44
摘要

Abstract Objective. Nuclei segmentation is crucial for pathologists to accurately classify and grade cancer. However, this process faces significant challenges, such as the complex background structures in pathological images, the high-density distribution of nuclei, and cell adhesion. Approach. In this paper, we present an interactive nuclei segmentation framework that increases the precision of nuclei segmentation. Our framework incorporates expert monitoring to gather as much prior information as possible and accurately segment complex nucleus images through limited pathologist interaction, where only a small portion of the nucleus locations in each image are labeled. The initial contour is determined by the Voronoi diagram generated from the labeled points, which is then input into an optimized weighted convex difference model to regularize partition boundaries in an image. Specifically, we provide theoretical proof of the mathematical model, stating that the objective function monotonically decreases. Furthermore, we explore a postprocessing stage that incorporates histograms, which are simple and easy to handle and prevent arbitrariness and subjectivity in individual choices. Main results. To evaluate our approach, we conduct experiments on both a cervical cancer dataset and a nasopharyngeal cancer dataset. The experimental results demonstrate that our approach achieves competitive performance compared to other methods. Significance. The Voronoi diagram in the paper serves as prior information for the active contour, providing positional information for individual cells. Moreover, the active contour model achieves precise segmentation results while offering mathematical interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮老师发布了新的文献求助10
刚刚
刚刚
fanmo完成签到 ,获得积分0
1秒前
1秒前
聪慧的小土豆完成签到 ,获得积分10
3秒前
3秒前
自觉的凌青完成签到,获得积分10
3秒前
5秒前
7秒前
畅快芝麻发布了新的文献求助10
7秒前
zriverm发布了新的文献求助10
9秒前
干煸鸡发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
呸呸晓鹏发布了新的文献求助10
17秒前
枫之林发布了新的文献求助10
18秒前
小蘑菇应助zriverm采纳,获得10
20秒前
20秒前
20秒前
SciGPT应助小鱼采纳,获得10
21秒前
学术渣渣发布了新的文献求助30
21秒前
渡劫完成签到,获得积分10
22秒前
22秒前
25秒前
靓丽雨梅完成签到 ,获得积分10
25秒前
等待的花生完成签到,获得积分10
25秒前
27秒前
Mangues发布了新的文献求助30
27秒前
呸呸晓鹏完成签到,获得积分20
27秒前
搜集达人应助xuxu采纳,获得10
28秒前
111111关注了科研通微信公众号
29秒前
29秒前
29秒前
小唐尼发布了新的文献求助30
33秒前
33秒前
37秒前
彭于晏应助gewenxue采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073