Combining Motion Planner and Deep Reinforcement Learning for UAV Navigation in Unknown Environment

强化学习 计算机科学 运动规划 稳健性(进化) 人工智能 弹道 规划师 运动学 计算机视觉 避障 运动(物理) 一般化 机器人 移动机器人 数学 生物化学 经典力学 基因 物理 数学分析 化学 天文
作者
Yuntao Xue,Weisheng Chen
出处
期刊:IEEE robotics and automation letters 卷期号:9 (1): 635-642 被引量:8
标识
DOI:10.1109/lra.2023.3334978
摘要

Navigation of unmanned aerial vehicles (UAVs) in unknown environments is a challenging problem, and it is worth considering how to reach the target through static obstacles in a safe and energy-efficient manner. The traditional motion planning algorithm is easy to get into trouble when the obstacles are dense. The navigation algorithm based on reinforcement learning has better generalization and robustness, but the trajectory generated by the end-to-end method is not smooth and dynamic enough. In this work, a classical motion planning algorithm and deep reinforcement learning (DRL) algorithm are combined named RLPlanNav, which aims to solve the problem of safe and dynamic navigation of UAVs in unknown environments. The upper-layer DRL algorithm part of the framework receives the sensor raw information to generate the next local target, and the lower-layer classical planner generates a smooth and safe trajectory to reach the target. The DRL algorithm incorporates an LSTM network to add memory capabilities, thereby ensuring the effectiveness of local target selections. The proposed navigation framework is tested in a simulated environment where static obstacles are randomly generated, and has higher navigation success rates and more kinematic-compliant navigation trajectories compared to traditional motion planning methods and end-to-end methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助小叶大王采纳,获得10
刚刚
17完成签到,获得积分10
2秒前
海孩子完成签到,获得积分10
7秒前
薛乎虚完成签到 ,获得积分10
7秒前
艳艳宝完成签到 ,获得积分10
12秒前
失眠的笑翠完成签到 ,获得积分10
13秒前
14秒前
完美世界应助小白采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
gelinhao完成签到,获得积分10
17秒前
chi发布了新的文献求助10
18秒前
彭于彦祖应助科研通管家采纳,获得150
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
小杭76应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
小杭76应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
风清扬应助科研通管家采纳,获得150
23秒前
养猪大户完成签到 ,获得积分10
23秒前
小杭76应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得50
23秒前
量子星尘发布了新的文献求助10
23秒前
carly完成签到 ,获得积分10
25秒前
赖建琛完成签到 ,获得积分10
27秒前
秀丽笑容完成签到 ,获得积分10
28秒前
31秒前
四季豆完成签到,获得积分10
31秒前
那些兔儿完成签到 ,获得积分0
34秒前
所所应助闪闪灵雁采纳,获得10
35秒前
四季豆发布了新的文献求助10
36秒前
小羊完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
CodeCraft应助四季豆采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966