Predictive modeling of nitrogen and phosphorus concentrations in rivers using a machine learning framework: A case study in an urban-rural transitional area in Wenzhou China

环境科学 分水岭 非点源污染 城市化 污染 水生生态系统 水文学(农业) 环境监测 点源污染 随机森林 环境工程 生态学 机器学习 工程类 岩土工程 冶金 材料科学 生物 计算机科学
作者
Jingyuan Xue,Can Yuan,Xiaoliang Ji,Minghua Zhang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:910: 168521-168521 被引量:13
标识
DOI:10.1016/j.scitotenv.2023.168521
摘要

Rapid urbanization in China since 1980 generated environmental pressures of non-point source pollution (NPSP) and increased wide public concerns. Excessive quantities of nitrogen (N) and phosphorus (P) is a significant source of aquatic pollution, despite of their roles as essential nutritional elements for aquatic life processes. In this study, we present a new framework using random forest (RF) as a powerful machine learning algorithm driven by geo-datasets to estimate and map the concentration of total nitrogen (TN) and phosphorus (TP) at a spatial resolution for the Wen-Rui Tang River (WRTR) watershed, which is a typically urban-rural transitional area in east coastal region of China. A comprehensive GIS database of 26 in-house built environmental variables was adopted to build the predictive models of TN and TP in open waters over the watershed. The performances of the RF regression models were evaluated in comparison with in-situ measurements, and the results indicated the ability of RF regression models to accurately predict the spatiotemporal distribution of N and P concentration in rivers. Charactering the explanatory variable importance measures in the calibrated RF regression model defined the most significant variables impacting N and P contaminations in open waters across the urban-rural transitional area, and the results showed that these variables are aquaculture, direct domestic sewage, industrial wastewater discharges and the changing meteorological variables. Besides, mapping of the TN and TP concentrations across the continuous river at high spatiotemporal resolution (daily, 1 km × 1 km) in this study were informative. The results in this study provided the valuable data to various different stakeholders for managing water quality and pollution control where similar regions with rapid urbanization and a lack of water quality monitoring datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PYF完成签到,获得积分10
刚刚
我是老大应助qqqq采纳,获得10
刚刚
Lindsay发布了新的文献求助10
刚刚
Hello应助淡定采波采纳,获得10
1秒前
cloudss完成签到,获得积分10
1秒前
yu完成签到,获得积分10
2秒前
2秒前
22222发布了新的文献求助30
2秒前
Ava应助冬青采纳,获得10
3秒前
研友_VZG7GZ应助外向怜珊采纳,获得10
3秒前
ZRR发布了新的文献求助10
3秒前
mxh695636455发布了新的文献求助10
3秒前
华仔应助www采纳,获得10
4秒前
222发布了新的文献求助10
4秒前
七月发布了新的文献求助10
4秒前
晨晨晨完成签到,获得积分10
4秒前
阔达的小海豚完成签到,获得积分10
4秒前
AmyHu发布了新的文献求助30
4秒前
2t应助Fyu采纳,获得10
5秒前
辣辣应助Wangyingjie5采纳,获得10
5秒前
有魅力的以南完成签到,获得积分10
5秒前
6秒前
科研通AI6应助vv1223采纳,获得30
6秒前
7秒前
8秒前
8秒前
Ronners发布了新的文献求助10
8秒前
过儿完成签到,获得积分10
9秒前
吴帆发布了新的文献求助10
9秒前
Jasper应助寒若风秋采纳,获得10
10秒前
共享精神应助雨点采纳,获得150
10秒前
林乐乐发布了新的文献求助10
10秒前
VVV发布了新的文献求助10
11秒前
无花果应助rora采纳,获得10
11秒前
orixero应助吴彦祖采纳,获得10
11秒前
dahong完成签到 ,获得积分10
11秒前
123完成签到,获得积分10
12秒前
12秒前
12秒前
领导范儿应助wzz采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576771
求助须知:如何正确求助?哪些是违规求助? 4662075
关于积分的说明 14739673
捐赠科研通 4602713
什么是DOI,文献DOI怎么找? 2525900
邀请新用户注册赠送积分活动 1495825
关于科研通互助平台的介绍 1465470