Predictive modeling of nitrogen and phosphorus concentrations in rivers using a machine learning framework: A case study in an urban-rural transitional area in Wenzhou China

环境科学 分水岭 非点源污染 城市化 污染 水生生态系统 水文学(农业) 环境监测 点源污染 随机森林 环境工程 生态学 机器学习 工程类 岩土工程 冶金 材料科学 生物 计算机科学
作者
Jingyuan Xue,Can Yuan,Xiaoliang Ji,Minghua Zhang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:910: 168521-168521 被引量:13
标识
DOI:10.1016/j.scitotenv.2023.168521
摘要

Rapid urbanization in China since 1980 generated environmental pressures of non-point source pollution (NPSP) and increased wide public concerns. Excessive quantities of nitrogen (N) and phosphorus (P) is a significant source of aquatic pollution, despite of their roles as essential nutritional elements for aquatic life processes. In this study, we present a new framework using random forest (RF) as a powerful machine learning algorithm driven by geo-datasets to estimate and map the concentration of total nitrogen (TN) and phosphorus (TP) at a spatial resolution for the Wen-Rui Tang River (WRTR) watershed, which is a typically urban-rural transitional area in east coastal region of China. A comprehensive GIS database of 26 in-house built environmental variables was adopted to build the predictive models of TN and TP in open waters over the watershed. The performances of the RF regression models were evaluated in comparison with in-situ measurements, and the results indicated the ability of RF regression models to accurately predict the spatiotemporal distribution of N and P concentration in rivers. Charactering the explanatory variable importance measures in the calibrated RF regression model defined the most significant variables impacting N and P contaminations in open waters across the urban-rural transitional area, and the results showed that these variables are aquaculture, direct domestic sewage, industrial wastewater discharges and the changing meteorological variables. Besides, mapping of the TN and TP concentrations across the continuous river at high spatiotemporal resolution (daily, 1 km × 1 km) in this study were informative. The results in this study provided the valuable data to various different stakeholders for managing water quality and pollution control where similar regions with rapid urbanization and a lack of water quality monitoring datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
syc完成签到 ,获得积分10
1秒前
科研小弟完成签到,获得积分10
1秒前
小白不科研完成签到,获得积分10
1秒前
NexusExplorer应助Tomin采纳,获得10
2秒前
2秒前
圆锥香蕉应助汤飞柏采纳,获得20
3秒前
SYLH应助Hexagram采纳,获得10
4秒前
Han发布了新的文献求助10
4秒前
syc关注了科研通微信公众号
4秒前
5秒前
Micheal完成签到,获得积分10
6秒前
6秒前
丘比特应助白衣轻叹采纳,获得10
6秒前
ZZ发布了新的文献求助10
7秒前
7秒前
luo发布了新的文献求助30
9秒前
11秒前
慶1发布了新的文献求助10
12秒前
lbx发布了新的文献求助10
13秒前
13秒前
13秒前
能干白容完成签到,获得积分10
13秒前
今后应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
14秒前
水木应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得30
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
14秒前
无花果应助科研通管家采纳,获得10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202