Predictive modeling of nitrogen and phosphorus concentrations in rivers using a machine learning framework: A case study in an urban-rural transitional area in Wenzhou China

环境科学 分水岭 非点源污染 城市化 污染 水生生态系统 水文学(农业) 环境监测 点源污染 随机森林 环境工程 生态学 机器学习 工程类 岩土工程 冶金 材料科学 生物 计算机科学
作者
Jingyuan Xue,Can Yuan,Xiaoliang Ji,Minghua Zhang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:910: 168521-168521 被引量:13
标识
DOI:10.1016/j.scitotenv.2023.168521
摘要

Rapid urbanization in China since 1980 generated environmental pressures of non-point source pollution (NPSP) and increased wide public concerns. Excessive quantities of nitrogen (N) and phosphorus (P) is a significant source of aquatic pollution, despite of their roles as essential nutritional elements for aquatic life processes. In this study, we present a new framework using random forest (RF) as a powerful machine learning algorithm driven by geo-datasets to estimate and map the concentration of total nitrogen (TN) and phosphorus (TP) at a spatial resolution for the Wen-Rui Tang River (WRTR) watershed, which is a typically urban-rural transitional area in east coastal region of China. A comprehensive GIS database of 26 in-house built environmental variables was adopted to build the predictive models of TN and TP in open waters over the watershed. The performances of the RF regression models were evaluated in comparison with in-situ measurements, and the results indicated the ability of RF regression models to accurately predict the spatiotemporal distribution of N and P concentration in rivers. Charactering the explanatory variable importance measures in the calibrated RF regression model defined the most significant variables impacting N and P contaminations in open waters across the urban-rural transitional area, and the results showed that these variables are aquaculture, direct domestic sewage, industrial wastewater discharges and the changing meteorological variables. Besides, mapping of the TN and TP concentrations across the continuous river at high spatiotemporal resolution (daily, 1 km × 1 km) in this study were informative. The results in this study provided the valuable data to various different stakeholders for managing water quality and pollution control where similar regions with rapid urbanization and a lack of water quality monitoring datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianxiangning发布了新的文献求助10
1秒前
完美世界应助疯狂的海白采纳,获得10
1秒前
跳不起来的大神完成签到 ,获得积分10
1秒前
123完成签到 ,获得积分10
3秒前
Zkxxxx完成签到,获得积分10
3秒前
chaichai完成签到,获得积分10
3秒前
桉钰完成签到 ,获得积分10
4秒前
任性星星完成签到 ,获得积分10
4秒前
时尚的菠萝完成签到,获得积分10
6秒前
田様应助远山采纳,获得10
6秒前
7秒前
脑洞疼应助踏实的亦凝采纳,获得10
7秒前
年轻的怀蕊完成签到 ,获得积分10
7秒前
长情的寇完成签到 ,获得积分10
8秒前
8秒前
孔懿轩发布了新的文献求助10
8秒前
静香发布了新的文献求助10
9秒前
可乐完成签到 ,获得积分10
9秒前
10秒前
所所应助Adrenaline采纳,获得10
12秒前
13秒前
拼搏的小鱼完成签到 ,获得积分10
13秒前
14秒前
dou发布了新的文献求助10
14秒前
科研通AI2S应助齐静春采纳,获得10
16秒前
Stella应助孙乐777采纳,获得10
17秒前
深情安青应助Liz111采纳,获得10
17秒前
赘婿应助聽你说采纳,获得10
18秒前
小蜗牛发布了新的文献求助10
18秒前
完美世界应助花骨头采纳,获得10
19秒前
lihua发布了新的文献求助10
20秒前
Biu发布了新的文献求助10
21秒前
糊涂的雪珊完成签到 ,获得积分10
21秒前
22秒前
CodeCraft应助zhans采纳,获得10
23秒前
追寻鞋垫应助兰先生采纳,获得10
24秒前
24秒前
笑死活该完成签到,获得积分10
25秒前
烟花应助激动的秋莲采纳,获得10
26秒前
洁净依云完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568780
求助须知:如何正确求助?哪些是违规求助? 4653506
关于积分的说明 14705958
捐赠科研通 4595224
什么是DOI,文献DOI怎么找? 2521599
邀请新用户注册赠送积分活动 1493086
关于科研通互助平台的介绍 1463858