化学
共价有机骨架
氧化还原
水溶液
插层(化学)
电解质
共价键
阳极
溶解度
离子
无机化学
有机化学
电极
物理化学
作者
Siqi Zhang,You‐Liang Zhu,Shouhua Feng,Chunguang Li,Xiaobo Chen,Zhenjiang Li,Yu Han,Zhan Shi,Shouhua Feng
摘要
Organic materials are promising for cation storage in calcium ion batteries (CIBs). However, the high solubility of organic materials in an electrolyte and low electronic conductivity remain the key challenges for high-performance CIBs. Herein, a nitrogen-rich covalent organic framework with multiple carbonyls (TB-COF) is designed as an aqueous anode to address those obstacles. TB-COF demonstrates a high reversible capacity of 253 mAh g-1 at 1.0 A g-1 and long cycle life (0.01% capacity decay per cycle at 5 A g-1 after 3000 cycles). The redox mechanism of Ca2+/H+ co-intercalated in COF and chelating with C═O and C═N active sites is validated. In addition, a novel C═C active site was identified for Ca2+ ion storage. Both computational and empirical results reveal that per TB-COF repetitive unit, up to nine Ca2+ ions are stored after three staggered intercalation steps, involving three distinct Ca2+ ion storage sites. Finally, the evolution process of radical intermediates further elucidates the C═C reaction mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI