已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A temporal convolutional recurrent autoencoder based framework for compressing time series data

自编码 循环神经网络 计算机科学 深度学习 卷积神经网络 人工智能 编码器 时间序列 系列(地层学) 数据压缩 模式识别(心理学) 人工神经网络 算法 机器学习 生物 操作系统 古生物学
作者
Zhong Zheng,Zijun Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:147: 110797-110797 被引量:10
标识
DOI:10.1016/j.asoc.2023.110797
摘要

The sharply growing volume of time series data due to recent sensing technology advancement poses emerging challenges to the data transfer speed and storage as well as corresponding energy consumption. To tackle the overwhelming volume of time series data in transmission and storage, compressing time series, which encodes time series into smaller size representations while enables authentic restoration of compressed ones with minimizing the reconstruction error, has attracted significant attention. Numerous methods have been developed and recent deep learning ones with minimal assumptions on data characteristics, such as recurrent autoencoders, have shown themselves to be competitive. Yet, capturing long-term dependencies in time series compression is a significant challenge calling further development. To make a response, this paper proposes a temporal convolutional recurrent autoencoder framework for more effective time series compression. First, two autoencoder modules, the temporal convolutional network encoder with a recurrent neural network decoder (TCN-RNN) and the temporal convolutional network encoder with an attention assisted recurrent neural network decoder (TCN-ARNN), are developed. The TCN-RNN employs only the recurrent neural network decoder to reconstruct the time series in reverse order. In contrast, the TCN-ARNN uses two recurrent neural networks to reconstruct the time series in both forward and reverse order in parallel. In addition, a timestep-wise attention network is developed to incorporate the forward and reverse reconstructions into the ultimate reconstruction with adaptive weights. Finally, a model selection procedure is developed to adaptively select between the TCN-RNN and TCN-ARNN based on their reconstruction performance on the validation dataset. Computational experiments on five datasets show that the proposed temporal convolutional recurrent autoencoder outperforms state-of-the-art benchmarking models in terms of lower reconstruction errors with the same compression ratio, achieving an improvement of up to 45.14% in the average of mean squared errors. Results indicate a promising potential of the proposed temporal convolutional recurrent autoencoder on the time series compression for various applications involving long time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助szj采纳,获得10
刚刚
刚刚
搜集达人应助szj采纳,获得10
刚刚
CodeCraft应助szj采纳,获得30
刚刚
小马甲应助szj采纳,获得10
刚刚
科研通AI6应助szj采纳,获得10
刚刚
夏紫儿完成签到 ,获得积分10
1秒前
嗯_好发布了新的文献求助10
2秒前
5秒前
Hello应助CXS采纳,获得10
5秒前
5秒前
Akim应助没有昵称采纳,获得10
6秒前
czh发布了新的文献求助10
6秒前
kexi发布了新的文献求助10
9秒前
yys完成签到 ,获得积分10
9秒前
坦率珍完成签到,获得积分10
9秒前
小鱼发布了新的文献求助20
10秒前
威武天抒发布了新的文献求助10
10秒前
11秒前
夜枫完成签到 ,获得积分10
13秒前
慕青应助szj采纳,获得10
14秒前
CipherSage应助szj采纳,获得10
14秒前
可爱的函函应助szj采纳,获得10
14秒前
小马甲应助szj采纳,获得10
14秒前
Owen应助szj采纳,获得10
14秒前
大个应助szj采纳,获得10
14秒前
Ll完成签到 ,获得积分10
14秒前
小蘑菇应助szj采纳,获得10
14秒前
赘婿应助szj采纳,获得30
14秒前
CipherSage应助szj采纳,获得10
14秒前
田様应助szj采纳,获得30
14秒前
Carrie完成签到,获得积分20
15秒前
typpppp完成签到,获得积分10
16秒前
18秒前
18秒前
凤梨罐头吞噬者完成签到,获得积分10
18秒前
张龙雨发布了新的文献求助10
19秒前
22秒前
737发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422