A temporal convolutional recurrent autoencoder based framework for compressing time series data

自编码 循环神经网络 计算机科学 深度学习 卷积神经网络 人工智能 编码器 时间序列 系列(地层学) 数据压缩 模式识别(心理学) 人工神经网络 算法 机器学习 古生物学 生物 操作系统
作者
Zhong Zheng,Zijun Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110797-110797 被引量:3
标识
DOI:10.1016/j.asoc.2023.110797
摘要

The sharply growing volume of time series data due to recent sensing technology advancement poses emerging challenges to the data transfer speed and storage as well as corresponding energy consumption. To tackle the overwhelming volume of time series data in transmission and storage, compressing time series, which encodes time series into smaller size representations while enables authentic restoration of compressed ones with minimizing the reconstruction error, has attracted significant attention. Numerous methods have been developed and recent deep learning ones with minimal assumptions on data characteristics, such as recurrent autoencoders, have shown themselves to be competitive. Yet, capturing long-term dependencies in time series compression is a significant challenge calling further development. To make a response, this paper proposes a temporal convolutional recurrent autoencoder framework for more effective time series compression. First, two autoencoder modules, the temporal convolutional network encoder with a recurrent neural network decoder (TCN-RNN) and the temporal convolutional network encoder with an attention assisted recurrent neural network decoder (TCN-ARNN), are developed. The TCN-RNN employs only the recurrent neural network decoder to reconstruct the time series in reverse order. In contrast, the TCN-ARNN uses two recurrent neural networks to reconstruct the time series in both forward and reverse order in parallel. In addition, a timestep-wise attention network is developed to incorporate the forward and reverse reconstructions into the ultimate reconstruction with adaptive weights. Finally, a model selection procedure is developed to adaptively select between the TCN-RNN and TCN-ARNN based on their reconstruction performance on the validation dataset. Computational experiments on five datasets show that the proposed temporal convolutional recurrent autoencoder outperforms state-of-the-art benchmarking models in terms of lower reconstruction errors with the same compression ratio, achieving an improvement of up to 45.14% in the average of mean squared errors. Results indicate a promising potential of the proposed temporal convolutional recurrent autoencoder on the time series compression for various applications involving long time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wanci应助strings采纳,获得10
4秒前
5秒前
华仔应助Cwx2020采纳,获得10
5秒前
cappuccino发布了新的文献求助10
6秒前
冷酷云朵发布了新的文献求助10
7秒前
丘比特应助GGGrigor采纳,获得30
8秒前
船长完成签到,获得积分10
9秒前
xpd发布了新的文献求助30
10秒前
唯有发布了新的文献求助10
11秒前
852应助俭朴尔竹采纳,获得10
11秒前
11秒前
cappuccino完成签到,获得积分10
12秒前
鲤鱼鸽子完成签到,获得积分10
15秒前
鲤鱼鸽子发布了新的文献求助10
18秒前
21秒前
23秒前
刘丽梅完成签到 ,获得积分10
25秒前
25秒前
菜菜发布了新的文献求助10
26秒前
yuu发布了新的文献求助10
29秒前
31秒前
449完成签到,获得积分20
32秒前
ada关闭了ada文献求助
34秒前
夜冷瞳发布了新的文献求助10
36秒前
会笑的蜗牛完成签到 ,获得积分10
36秒前
雍遥发布了新的文献求助10
36秒前
36秒前
Cathy完成签到,获得积分10
37秒前
38秒前
和谐亦瑶完成签到,获得积分10
39秒前
琥珀川完成签到,获得积分10
39秒前
39秒前
40秒前
42秒前
重要寄松发布了新的文献求助10
42秒前
Megumi发布了新的文献求助10
43秒前
复杂沛白完成签到,获得积分20
43秒前
完美世界应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149249
求助须知:如何正确求助?哪些是违规求助? 2800330
关于积分的说明 7839533
捐赠科研通 2457883
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628441
版权声明 601706