A temporal convolutional recurrent autoencoder based framework for compressing time series data

自编码 循环神经网络 计算机科学 深度学习 卷积神经网络 人工智能 编码器 时间序列 系列(地层学) 数据压缩 模式识别(心理学) 人工神经网络 算法 机器学习 生物 操作系统 古生物学
作者
Zhong Zheng,Zijun Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110797-110797 被引量:10
标识
DOI:10.1016/j.asoc.2023.110797
摘要

The sharply growing volume of time series data due to recent sensing technology advancement poses emerging challenges to the data transfer speed and storage as well as corresponding energy consumption. To tackle the overwhelming volume of time series data in transmission and storage, compressing time series, which encodes time series into smaller size representations while enables authentic restoration of compressed ones with minimizing the reconstruction error, has attracted significant attention. Numerous methods have been developed and recent deep learning ones with minimal assumptions on data characteristics, such as recurrent autoencoders, have shown themselves to be competitive. Yet, capturing long-term dependencies in time series compression is a significant challenge calling further development. To make a response, this paper proposes a temporal convolutional recurrent autoencoder framework for more effective time series compression. First, two autoencoder modules, the temporal convolutional network encoder with a recurrent neural network decoder (TCN-RNN) and the temporal convolutional network encoder with an attention assisted recurrent neural network decoder (TCN-ARNN), are developed. The TCN-RNN employs only the recurrent neural network decoder to reconstruct the time series in reverse order. In contrast, the TCN-ARNN uses two recurrent neural networks to reconstruct the time series in both forward and reverse order in parallel. In addition, a timestep-wise attention network is developed to incorporate the forward and reverse reconstructions into the ultimate reconstruction with adaptive weights. Finally, a model selection procedure is developed to adaptively select between the TCN-RNN and TCN-ARNN based on their reconstruction performance on the validation dataset. Computational experiments on five datasets show that the proposed temporal convolutional recurrent autoencoder outperforms state-of-the-art benchmarking models in terms of lower reconstruction errors with the same compression ratio, achieving an improvement of up to 45.14% in the average of mean squared errors. Results indicate a promising potential of the proposed temporal convolutional recurrent autoencoder on the time series compression for various applications involving long time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓畅完成签到,获得积分10
2秒前
科研通AI6.1应助对称破缺采纳,获得10
5秒前
刘十一完成签到 ,获得积分10
5秒前
5秒前
慢半拍完成签到,获得积分10
5秒前
von完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
17263365721完成签到 ,获得积分10
7秒前
冬天的回忆完成签到 ,获得积分10
7秒前
风清扬应助科研通管家采纳,获得30
8秒前
李健应助科研通管家采纳,获得10
8秒前
dangdang应助科研通管家采纳,获得40
8秒前
8秒前
Frank应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
9秒前
Frank应助科研通管家采纳,获得10
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
泽松应助科研通管家采纳,获得10
9秒前
9秒前
大个应助科研通管家采纳,获得50
9秒前
量子星尘发布了新的文献求助10
9秒前
小二郎应助Narcissus采纳,获得10
9秒前
寒冷的小熊猫完成签到,获得积分10
10秒前
11秒前
华仔应助苗苗会喵喵采纳,获得10
12秒前
14秒前
wayne完成签到,获得积分10
16秒前
zcydbttj2011完成签到 ,获得积分10
20秒前
limo完成签到 ,获得积分10
20秒前
ying完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060