A temporal convolutional recurrent autoencoder based framework for compressing time series data

自编码 循环神经网络 计算机科学 深度学习 卷积神经网络 人工智能 编码器 时间序列 系列(地层学) 数据压缩 模式识别(心理学) 人工神经网络 算法 机器学习 古生物学 生物 操作系统
作者
Zhong Zheng,Zijun Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110797-110797 被引量:10
标识
DOI:10.1016/j.asoc.2023.110797
摘要

The sharply growing volume of time series data due to recent sensing technology advancement poses emerging challenges to the data transfer speed and storage as well as corresponding energy consumption. To tackle the overwhelming volume of time series data in transmission and storage, compressing time series, which encodes time series into smaller size representations while enables authentic restoration of compressed ones with minimizing the reconstruction error, has attracted significant attention. Numerous methods have been developed and recent deep learning ones with minimal assumptions on data characteristics, such as recurrent autoencoders, have shown themselves to be competitive. Yet, capturing long-term dependencies in time series compression is a significant challenge calling further development. To make a response, this paper proposes a temporal convolutional recurrent autoencoder framework for more effective time series compression. First, two autoencoder modules, the temporal convolutional network encoder with a recurrent neural network decoder (TCN-RNN) and the temporal convolutional network encoder with an attention assisted recurrent neural network decoder (TCN-ARNN), are developed. The TCN-RNN employs only the recurrent neural network decoder to reconstruct the time series in reverse order. In contrast, the TCN-ARNN uses two recurrent neural networks to reconstruct the time series in both forward and reverse order in parallel. In addition, a timestep-wise attention network is developed to incorporate the forward and reverse reconstructions into the ultimate reconstruction with adaptive weights. Finally, a model selection procedure is developed to adaptively select between the TCN-RNN and TCN-ARNN based on their reconstruction performance on the validation dataset. Computational experiments on five datasets show that the proposed temporal convolutional recurrent autoencoder outperforms state-of-the-art benchmarking models in terms of lower reconstruction errors with the same compression ratio, achieving an improvement of up to 45.14% in the average of mean squared errors. Results indicate a promising potential of the proposed temporal convolutional recurrent autoencoder on the time series compression for various applications involving long time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的海发布了新的文献求助10
1秒前
打打应助草木采纳,获得10
1秒前
1秒前
2秒前
胡慧婷完成签到 ,获得积分10
3秒前
如常完成签到,获得积分10
4秒前
偏偏海完成签到,获得积分10
4秒前
yuki完成签到 ,获得积分10
4秒前
4秒前
踏实幻竹发布了新的文献求助10
5秒前
海德堡完成签到,获得积分10
5秒前
5秒前
lqy完成签到,获得积分10
5秒前
5秒前
shuoye发布了新的文献求助30
5秒前
5秒前
田様应助gsit采纳,获得10
5秒前
6秒前
希望天下0贩的0应助水123采纳,获得10
7秒前
8秒前
8秒前
leey发布了新的文献求助10
9秒前
lqy发布了新的文献求助10
10秒前
wang发布了新的文献求助10
10秒前
洪豆豆完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
SciGPT应助aaa采纳,获得30
14秒前
豆子发布了新的文献求助10
15秒前
Bonaventure完成签到,获得积分10
16秒前
leey完成签到,获得积分10
16秒前
调皮帆布鞋完成签到,获得积分10
18秒前
你都至少信我八分吧完成签到 ,获得积分10
19秒前
Luffa完成签到,获得积分10
21秒前
22秒前
22秒前
rsimap360完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
一丁点可爱完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814