GPU Accelerated Full Homomorphic Encryption Cryptosystem, Library, and Applications for IoT Systems

计算机科学 同态加密 密文 MNIST数据库 卷积神经网络 协处理器 云计算 加密 明文 深度学习 计算机工程 并行计算 人工智能 计算机网络 操作系统
作者
Xin Jin,Hehe Gao,Jianyi Zhang,Shuya Yang,Xin Jin,Kim–Kwang Raymond Choo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6893-6903 被引量:2
标识
DOI:10.1109/jiot.2023.3313443
摘要

Deep learning such as convolutional neural networks (CNNs) have been utilized in a number of cloud-based Internet of Things (IoT) applications. Security and privacy are two key considerations in any commercial deployments. Fully homomorphic encryption (FHE) is a popular privacy protection approach, and there have been attempts to integrate FHE with CNNs. However, a simple integration may lead to inefficiency in single-user services and fail to support many of the requirements in real-time applications. In this paper, we propose a novel confused modulo projection based FHE algorithm (CMP-FHE) that is designed to support floating-point operations. Then we developed a parallelized runtime library based on CMP-FHE and compared it with the widely employed FHE library. Our results show that our library achieves a faster speeds. Furthermore, we compared it with the state-of-the-art confused modulo projection based library and the results demonstrated a speed improvement of 841.67 to 3056.25 times faster. Additionally, we construct a Real-Time Homomorphic Convolutional Neural Network (RT-HCNN) under the ciphertext-based framework using CMP-FHE, as well as using graphics processing units (GPUs) to facilitate acceleration. To demonstrate utility, we evaluate the proposed approach on the MNIST dataset. Findings demonstrate that our proposed approach achieves a high accuracy rate of 99.13%. Using GPUs acceleration for ciphertext prediction results in us achieving a single prediction time of 79.5 ms. This represents the first homomorphic CNN capable of supporting real-time application and is approximately 58 times faster than Microsoft’s Lola scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Zb151n完成签到,获得积分10
刚刚
1秒前
沉甸甸发布了新的文献求助30
1秒前
丁丁发布了新的文献求助10
1秒前
1秒前
shanage应助小王同学采纳,获得10
1秒前
白白发布了新的文献求助10
3秒前
大贺呀完成签到,获得积分10
3秒前
Marybaby完成签到,获得积分10
4秒前
5秒前
甜甜雁玉发布了新的文献求助10
5秒前
NexusExplorer应助缓慢若菱采纳,获得10
5秒前
15884134873完成签到,获得积分10
6秒前
学fei了吗发布了新的文献求助10
7秒前
CiCi发布了新的文献求助10
8秒前
9秒前
10秒前
LIU完成签到,获得积分10
10秒前
甜甜雁玉完成签到,获得积分10
11秒前
12秒前
毛豆应助失眠的咖啡豆采纳,获得10
13秒前
kk发布了新的文献求助10
13秒前
14秒前
Hua完成签到,获得积分10
15秒前
wandaiji发布了新的文献求助10
15秒前
贾文斌完成签到,获得积分10
16秒前
SYC完成签到,获得积分10
17秒前
17秒前
yqhide完成签到,获得积分10
17秒前
li发布了新的文献求助10
17秒前
wallonce发布了新的文献求助10
17秒前
rl完成签到,获得积分10
18秒前
缓慢若菱完成签到,获得积分20
19秒前
老王发布了新的文献求助10
20秒前
烟花应助威武的迎曼采纳,获得10
20秒前
Jovial完成签到,获得积分10
22秒前
科研通AI2S应助shawn采纳,获得10
22秒前
23秒前
Hui关注了科研通微信公众号
24秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304594
求助须知:如何正确求助?哪些是违规求助? 2938563
关于积分的说明 8489148
捐赠科研通 2613044
什么是DOI,文献DOI怎么找? 1427077
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647483