A machine learning approach for clustered data

过度拟合 人工神经网络 聚类分析 计算机科学 先验与后验 人工智能 梯度下降 反向传播 机器学习 正规化(语言学) 认识论 哲学
作者
Jing Wang
出处
期刊:Communications in Statistics - Simulation and Computation [Taylor & Francis]
卷期号:: 1-11
标识
DOI:10.1080/03610918.2023.2254953
摘要

Artificial neural networks (NNs) are a machine learning algorithm that have been used as a convenient alternative of conventional statistical models, such as regression in prediction and classification because of their capability of modeling complex relationships between dependent and independent variables without a priori assumptions about the model form and variable distributions. However, traditional NNs cannot incorporate dependencies of data with a clustering or nesting structure involved in longitudinal studies and cluster sampling. This research is intended to fill this literature gap by integrating the random-effects structure into NNs to account for within-cluster correlations. The proposed NN method incorporating random effects (NNRE) is trained by minimizing the cost function using the backpropagation algorithm combined with the quasi-Newton and gradient descent algorithms. Model overfitting is controlled by using the L2 regularization method. The trained NNRE model is evaluated for prediction accuracy by using the leaving-one-out cross-validation for both simulated and real data. Prediction accuracy is compared between NNRE and two existing models, the conventional generalized linear mixed model (GLIMMIX) and the generalized neural network mixed model (GNMM), using simulations and real data. Results show that the proposed NNRE results in higher accuracy than both the GLIMMIX and GNMM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助jingyu841123采纳,获得10
1秒前
dearcih完成签到,获得积分10
2秒前
2秒前
3秒前
yankai发布了新的文献求助30
3秒前
小二郎应助木易采纳,获得10
3秒前
3秒前
帅关完成签到,获得积分10
3秒前
Akim应助马良伟采纳,获得10
3秒前
Owen应助细腻的歌曲采纳,获得10
4秒前
甜瓜不熟完成签到,获得积分10
5秒前
六六大顺发布了新的文献求助10
5秒前
喝下午茶的狗完成签到,获得积分10
6秒前
桐桐应助hantuo采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
小饼干完成签到,获得积分10
10秒前
sujustin333发布了新的文献求助30
11秒前
11秒前
阿刁完成签到,获得积分10
12秒前
zm发布了新的文献求助30
12秒前
生动的水池完成签到,获得积分10
13秒前
在水一方应助飞飞采纳,获得10
13秒前
云中发布了新的文献求助10
13秒前
就不吃苹果完成签到,获得积分10
14秒前
guozizi发布了新的文献求助10
14秒前
专注的傲之完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
16秒前
坤坤蹦蹦跳跳完成签到,获得积分10
16秒前
17秒前
学了个习应助sujustin333采纳,获得10
17秒前
guozizi发布了新的文献求助20
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836