Fracture Process of Mechanically Interlocked Ductile Glass Under Uniaxial Tension

缩颈 材料科学 复合材料 聚合物 极限抗拉强度 应变硬化指数 垂直的 数学 几何学
作者
Kazuaki Kato,Kohzo Ito,Taiki Hoshino
出处
期刊:Macromolecules [American Chemical Society]
卷期号:56 (18): 7358-7365 被引量:4
标识
DOI:10.1021/acs.macromol.3c01368
摘要

A unique toughening mechanism in ductile glass was elucidated by multiscale in situ structural analysis. A brittle glass of a cyclic oligosaccharide derivative was significantly toughened by a small amount of a polymer that penetrated the molecular cavity. In situ scanning electron microscopy and synchrotron X-ray scattering under uniaxial tension revealed strain-induced nanovoid formation and growth accompanied by molecular-level structural changes. Nanovoids were widely formed in the sample before yielding, and then, they clustered into a disk-shaped slit a few micrometers in size and perpendicular to the tensile direction. Owing to the strain concentration through necking, the slit formed by the nanovoid cluster was widely opened in the tensile direction to form fibrils and then became stabilized, whereas the craze in a conventional polymer glass generally splits under a small strain. After the initial glass structure maintained by interactions between the homogeneously dispersed cyclic components collapsed, a high strain was applied to the polymers. The transfer of polymers through the cavity led to the conversion to another structure that had a shorter distance between the main components and a high molecular orientation. Because the reconstructed structure was considerably harder than the initial structure, this strain-induced hardening delocalized the strain at the fibrils and tips of the slits, leading to stable propagation of necking. This mechanism is similar to that of transformation-induced plasticity in advanced ductile steels. The results suggest that intuitive molecular designs focusing on the unique structural changes in mechanically interlocked glass are promising for creating advanced hard and ductile glasses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maxkun完成签到,获得积分10
刚刚
1秒前
Ava应助niuniu采纳,获得10
2秒前
2秒前
廉剑身发布了新的文献求助10
2秒前
3秒前
郝君颖发布了新的文献求助10
6秒前
大观天下发布了新的文献求助10
6秒前
踏实的幻姬关注了科研通微信公众号
6秒前
6秒前
催化研究所王妍完成签到,获得积分20
7秒前
7秒前
dd完成签到,获得积分10
8秒前
8秒前
9秒前
小马甲应助gulugulu采纳,获得10
10秒前
dd发布了新的文献求助10
12秒前
12秒前
Tan完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
xiao牛发布了新的文献求助10
14秒前
太阳发布了新的文献求助10
14秒前
英俊的铭应助pengyi采纳,获得10
14秒前
领导范儿应助火山大王采纳,获得10
14秒前
felix完成签到,获得积分10
15秒前
zq发布了新的文献求助10
16秒前
16秒前
17秒前
Mu完成签到,获得积分10
17秒前
zxcv22100发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
20秒前
20秒前
枇杷完成签到 ,获得积分10
21秒前
漂亮寻云完成签到 ,获得积分10
22秒前
感性的初兰完成签到,获得积分10
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407536
求助须知:如何正确求助?哪些是违规求助? 3012106
关于积分的说明 8852366
捐赠科研通 2699189
什么是DOI,文献DOI怎么找? 1479880
科研通“疑难数据库(出版商)”最低求助积分说明 684088
邀请新用户注册赠送积分活动 678345