MCNet: A multi-level context-aware network for the segmentation of adrenal gland in CT images

分割 计算机科学 背景(考古学) 人工智能 特征(语言学) 模式识别(心理学) 卷积神经网络 肾上腺 计算机视觉 医学 病理 语言学 生物 哲学 古生物学
作者
Jinhao Li,Huying Li,Yuan Zhang,Zhi‐Qiang Wang,Sheng Zhu,Xuanya Li,Kai Hu,Xieping Gao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:170: 136-148 被引量:1
标识
DOI:10.1016/j.neunet.2023.11.028
摘要

Accurate segmentation of the adrenal gland from abdominal computed tomography (CT) scans is a crucial step towards facilitating the computer-aided diagnosis of adrenal-related diseases such as essential hypertension and adrenal tumors. However, the small size of the adrenal gland, which occupies less than 1% of the abdominal CT slice, poses a significant challenge to accurate segmentation. To address this problem, we propose a novel multi-level context-aware network (MCNet) to segment adrenal glands in CT images. Our MCNet mainly consists of two components, i.e., the multi-level context aggregation (MCA) module and multi-level context guidance (MCG) module. Specifically, the MCA module employs multi-branch dilated convolutional layers to capture geometric information, which enables handling of changes in complex scenarios such as variations in the size and shape of objects. The MCG module, on the other hand, gathers valuable features from the shallow layer and leverages the complete utilization of feature information at different resolutions in various codec stages. Finally, we evaluate the performance of the MCNet on two CT datasets, including our clinical dataset (Ad-Seg) and a publicly available dataset known as Distorted Golden Standards (DGS), from different perspectives. Compared to ten other state-of-the-art segmentation methods, our MCNet achieves 71.34% and 75.29% of the best Dice similarity coefficient on the two datasets, respectively, which is at least 2.46% and 1.19% higher than other segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力荷花发布了新的文献求助10
2秒前
赘婿应助ylh采纳,获得10
3秒前
Qiu完成签到,获得积分10
3秒前
3秒前
一颗西柚发布了新的文献求助10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Liuya发布了新的文献求助10
5秒前
6秒前
9秒前
Fazie完成签到 ,获得积分10
9秒前
10秒前
小程发布了新的文献求助10
11秒前
to高坚果发布了新的文献求助30
12秒前
star发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
ylh发布了新的文献求助10
16秒前
nv42r8发布了新的文献求助10
19秒前
小馒头完成签到,获得积分10
21秒前
红甲发布了新的文献求助10
23秒前
我嘞个豆应助现实的访云采纳,获得10
26秒前
26秒前
Orange应助睡不醒的xx采纳,获得10
26秒前
nv42r8完成签到,获得积分10
28秒前
nml发布了新的文献求助10
29秒前
32秒前
殊量完成签到,获得积分10
33秒前
33秒前
思源应助小朱朱采纳,获得10
36秒前
orixero应助虚设采纳,获得10
37秒前
shirley发布了新的文献求助30
38秒前
研友_VZG7GZ应助害怕的蜻蜓采纳,获得10
38秒前
陈俊辉完成签到,获得积分10
39秒前
dnn_完成签到,获得积分10
39秒前
xinghhhe完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309