Incomplete Multimodal Learning for Visual Acuity Prediction After Cataract Surgery Using Masked Self-Attention

计算机科学 视力 杠杆(统计) 人工智能 缺少数据 白内障手术 稳健性(进化) 白内障 机器学习 医学 眼科 生物化学 化学 基因
作者
Qian Zhou,Hua Zou,Haifeng Jiang,Yong Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 735-744 被引量:4
标识
DOI:10.1007/978-3-031-43990-2_69
摘要

As the primary treatment option for cataracts, it is estimated that millions of cataract surgeries are performed each year globally. Predicting the Best Corrected Visual Acuity (BCVA) in cataract patients is crucial before surgeries to avoid medical disputes. However, accurate prediction remains a challenge in clinical practice. Traditional methods based on patient characteristics and surgical parameters have limited accuracy and often underestimate postoperative visual acuity. In this paper, we propose a novel framework for predicting visual acuity after cataract surgery using masked self-attention. Especially different from existing methods, which are based on monomodal data, our proposed method takes preoperative images and patient demographic data as input to leverage multimodal information. Furthermore, we expand our method to a more complex and challenging clinical scenario, i.e., the incomplete multimodal data. Firstly, we apply efficient Transformers to extract modality-specific features. Then, an attentional fusion network is utilized to fuse the multimodal information. To address the modality-missing problem, an attention mask mechanism is proposed to improve the robustness. We evaluate our method on a collected dataset of 1960 patients who underwent cataract surgery and compare its performance with other state-of-the-art approaches. The results show that our proposed method outperforms other methods and achieves a mean absolute error of 0.122 logMAR. The percentages of the prediction errors within ± 0.10 logMAR are 94.3%. Besides, extensive experiments are conducted to investigate the effectiveness of each component in predicting visual acuity. Codes will be available at https://github.com/liyiersan/MSA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ewww完成签到 ,获得积分10
刚刚
刚刚
浮游应助luoshikun采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
2秒前
喵誉玉完成签到 ,获得积分10
3秒前
4秒前
fjh发布了新的文献求助10
4秒前
lhhhhh完成签到,获得积分10
5秒前
5秒前
untilyou完成签到,获得积分10
7秒前
7秒前
lixu完成签到,获得积分20
7秒前
内向绮琴完成签到,获得积分10
7秒前
李健的小迷弟应助xyrt采纳,获得30
8秒前
9秒前
欣慰雪巧发布了新的文献求助10
10秒前
感谢完成签到,获得积分20
10秒前
科研通AI2S应助星辰亦会累采纳,获得10
11秒前
CC完成签到,获得积分10
11秒前
田様应助小芦铃采纳,获得10
11秒前
fjh完成签到,获得积分20
12秒前
慢慢完成签到,获得积分10
12秒前
淇奥完成签到 ,获得积分10
12秒前
13秒前
ccc完成签到,获得积分10
13秒前
SciGPT应助努力的安子采纳,获得10
13秒前
诚c发布了新的文献求助30
13秒前
CipherSage应助猪猪hero采纳,获得20
14秒前
14秒前
感谢发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
GingerF应助拓跋慕灵采纳,获得50
15秒前
进击的巨人完成签到,获得积分10
15秒前
制冷剂完成签到 ,获得积分10
15秒前
汉堡包应助如梦如画采纳,获得10
15秒前
nn发布了新的文献求助10
17秒前
WLL完成签到,获得积分10
19秒前
19秒前
思源应助紫色奶萨采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492