Incomplete Multimodal Learning for Visual Acuity Prediction After Cataract Surgery Using Masked Self-Attention

计算机科学 视力 杠杆(统计) 人工智能 缺少数据 白内障手术 稳健性(进化) 白内障 机器学习 医学 眼科 生物化学 化学 基因
作者
Qian Zhou,Hua Zou,Haifeng Jiang,Yong Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 735-744 被引量:2
标识
DOI:10.1007/978-3-031-43990-2_69
摘要

As the primary treatment option for cataracts, it is estimated that millions of cataract surgeries are performed each year globally. Predicting the Best Corrected Visual Acuity (BCVA) in cataract patients is crucial before surgeries to avoid medical disputes. However, accurate prediction remains a challenge in clinical practice. Traditional methods based on patient characteristics and surgical parameters have limited accuracy and often underestimate postoperative visual acuity. In this paper, we propose a novel framework for predicting visual acuity after cataract surgery using masked self-attention. Especially different from existing methods, which are based on monomodal data, our proposed method takes preoperative images and patient demographic data as input to leverage multimodal information. Furthermore, we expand our method to a more complex and challenging clinical scenario, i.e., the incomplete multimodal data. Firstly, we apply efficient Transformers to extract modality-specific features. Then, an attentional fusion network is utilized to fuse the multimodal information. To address the modality-missing problem, an attention mask mechanism is proposed to improve the robustness. We evaluate our method on a collected dataset of 1960 patients who underwent cataract surgery and compare its performance with other state-of-the-art approaches. The results show that our proposed method outperforms other methods and achieves a mean absolute error of 0.122 logMAR. The percentages of the prediction errors within ± 0.10 logMAR are 94.3%. Besides, extensive experiments are conducted to investigate the effectiveness of each component in predicting visual acuity. Codes will be available at https://github.com/liyiersan/MSA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUN发布了新的文献求助10
刚刚
852应助hhxx采纳,获得10
刚刚
Zzzzzzzz发布了新的文献求助10
刚刚
刚刚
明月曾经川岸去完成签到,获得积分10
1秒前
skippy完成签到 ,获得积分10
1秒前
姜姜发布了新的文献求助10
2秒前
Keep发布了新的文献求助10
2秒前
NB完成签到,获得积分10
2秒前
yy完成签到,获得积分10
2秒前
3秒前
安静的成风完成签到,获得积分10
3秒前
虚心的宛亦完成签到,获得积分10
3秒前
3秒前
4秒前
水1111发布了新的文献求助10
4秒前
小胡完成签到,获得积分10
4秒前
米某某完成签到,获得积分10
5秒前
冷静灵竹完成签到,获得积分10
5秒前
三磷酸腺苷完成签到 ,获得积分10
6秒前
6秒前
雨点发布了新的文献求助20
7秒前
上官若男应助anchor采纳,获得10
7秒前
22完成签到 ,获得积分10
7秒前
freeaway完成签到,获得积分10
7秒前
旋疯小子发布了新的文献求助10
7秒前
干死小鸣子完成签到,获得积分10
8秒前
大道无形我有型完成签到,获得积分10
8秒前
脑洞疼应助水1111采纳,获得10
9秒前
DD完成签到,获得积分10
9秒前
随机子应助立冬采纳,获得10
9秒前
传奇3应助DENG12345采纳,获得10
10秒前
薄荷味的猫完成签到,获得积分10
10秒前
10秒前
功不唐捐完成签到,获得积分10
10秒前
tent01完成签到,获得积分10
11秒前
梁33完成签到,获得积分10
11秒前
王妍发布了新的文献求助10
11秒前
温连虎完成签到,获得积分10
11秒前
yuekun发布了新的文献求助10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167375
求助须知:如何正确求助?哪些是违规求助? 2818893
关于积分的说明 7923236
捐赠科研通 2478710
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443