Low-Dose CT Image Super-Resolution Network with Dual-Guidance Feature Distillation and Dual-Path Content Communication

计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 块(置换群论) 迭代重建 模式识别(心理学) 噪音(视频) 路径(计算) 图像分辨率 图像(数学) 数学 哲学 程序设计语言 语言学 几何学
作者
Jianning Chi,Zhiyi Sun,Tianli Zhao,Huan Wang,Xiaosheng Yu,Chengdong Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 98-108 被引量:2
标识
DOI:10.1007/978-3-031-43999-5_10
摘要

Low-dose computer tomography (LDCT) has been widely used in medical diagnosis yet suffered from spatial resolution loss and artifacts. Numerous methods have been proposed to deal with those issues, but there still exists drawbacks: (1) convolution without guidance causes essential information not highlighted; (2) features with fixed-resolution lose the attention to multi-scale information; (3) single super-resolution module fails to balance details reconstruction and noise removal. Therefore, we propose an LDCT image super-resolution network consisting of a dual-guidance feature distillation backbone for elaborate visual feature extraction, and a dual-path content communication head for artifacts-free and details-clear CT reconstruction. Specifically, the dual-guidance feature distillation backbone is composed of a dual-guidance fusion module (DGFM) and a sampling attention block (SAB). The DGFM guides the network to concentrate the feature representation of the 3D inter-slice information in the region of interest (ROI) by introducing the average CT image and segmentation mask as complements of the original LDCT input. Meanwhile, the elaborate SAB utilizes the essential multi-scale features to capture visual information more relative to edges. The dual-path reconstruction architecture introduces the denoising head before and after the super-resolution (SR) head in each path to suppress residual artifacts, respectively. Furthermore, the heads with the same function share the parameters so as to efficiently improve the reconstruction performance by reducing the amount of parameters. The experiments compared with 6 state-of-the-art methods on 2 public datasets prove the superiority of our method. The code is made available at https://github.com/neu-szy/dual-guidance_LDCT_SR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助光亮元枫采纳,获得10
1秒前
2秒前
余额12138发布了新的文献求助10
2秒前
冷静硬币发布了新的文献求助10
3秒前
tree完成签到,获得积分10
3秒前
bkagyin应助呼啦呼啦圈采纳,获得10
4秒前
科研女郎完成签到 ,获得积分10
5秒前
5秒前
6秒前
qp完成签到,获得积分10
6秒前
李爱国应助SmuA采纳,获得10
8秒前
9秒前
余额12138完成签到,获得积分10
9秒前
星辰大海应助冷静硬币采纳,获得10
9秒前
10秒前
fillippo99应助xk采纳,获得20
10秒前
呆萌又柔应助科研通管家采纳,获得30
10秒前
Hello应助科研通管家采纳,获得30
10秒前
10秒前
在水一方应助coco采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
险胜应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
mhl11应助科研通管家采纳,获得10
11秒前
11秒前
科目三应助科研通管家采纳,获得10
11秒前
zys2001mezy应助科研通管家采纳,获得30
11秒前
Ganlou应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
13秒前
Ava应助chenchen采纳,获得10
13秒前
13秒前
酷波er应助咸鱼王采纳,获得10
13秒前
潘爱玲完成签到,获得积分10
13秒前
所所应助Jameson采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585