Low-Dose CT Image Super-Resolution Network with Dual-Guidance Feature Distillation and Dual-Path Content Communication

计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 块(置换群论) 迭代重建 模式识别(心理学) 噪音(视频) 路径(计算) 图像分辨率 图像(数学) 数学 哲学 语言学 几何学 程序设计语言
作者
Jianning Chi,Zhiyi Sun,Tianli Zhao,Huan Wang,Xiaosheng Yu,Chengdong Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 98-108 被引量:2
标识
DOI:10.1007/978-3-031-43999-5_10
摘要

Low-dose computer tomography (LDCT) has been widely used in medical diagnosis yet suffered from spatial resolution loss and artifacts. Numerous methods have been proposed to deal with those issues, but there still exists drawbacks: (1) convolution without guidance causes essential information not highlighted; (2) features with fixed-resolution lose the attention to multi-scale information; (3) single super-resolution module fails to balance details reconstruction and noise removal. Therefore, we propose an LDCT image super-resolution network consisting of a dual-guidance feature distillation backbone for elaborate visual feature extraction, and a dual-path content communication head for artifacts-free and details-clear CT reconstruction. Specifically, the dual-guidance feature distillation backbone is composed of a dual-guidance fusion module (DGFM) and a sampling attention block (SAB). The DGFM guides the network to concentrate the feature representation of the 3D inter-slice information in the region of interest (ROI) by introducing the average CT image and segmentation mask as complements of the original LDCT input. Meanwhile, the elaborate SAB utilizes the essential multi-scale features to capture visual information more relative to edges. The dual-path reconstruction architecture introduces the denoising head before and after the super-resolution (SR) head in each path to suppress residual artifacts, respectively. Furthermore, the heads with the same function share the parameters so as to efficiently improve the reconstruction performance by reducing the amount of parameters. The experiments compared with 6 state-of-the-art methods on 2 public datasets prove the superiority of our method. The code is made available at https://github.com/neu-szy/dual-guidance_LDCT_SR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温言发布了新的文献求助20
1秒前
Rahul完成签到,获得积分10
1秒前
默默的豆芽完成签到,获得积分10
1秒前
wangyanwxy完成签到,获得积分10
2秒前
flymove完成签到,获得积分10
2秒前
科研通AI5应助平淡南霜采纳,获得10
4秒前
wanci应助小小爱吃百香果采纳,获得10
4秒前
5秒前
5秒前
5秒前
7秒前
我是站长才怪应助xg采纳,获得10
7秒前
decimalpoint完成签到 ,获得积分10
9秒前
Benliu发布了新的文献求助20
9秒前
9秒前
Carol完成签到,获得积分10
9秒前
sw98318发布了新的文献求助10
10秒前
wang1090完成签到,获得积分10
10秒前
奋斗的许婷2完成签到,获得积分10
10秒前
10秒前
11秒前
hll完成签到,获得积分20
11秒前
阳yang发布了新的文献求助10
11秒前
12秒前
wang1090发布了新的文献求助30
13秒前
呜呜呜呜完成签到,获得积分10
13秒前
13秒前
Riki发布了新的文献求助10
14秒前
88发布了新的文献求助10
14秒前
15秒前
充电宝应助zfy采纳,获得10
16秒前
sak完成签到,获得积分10
17秒前
Shuo Yang发布了新的文献求助20
17秒前
呜呜呜呜发布了新的文献求助10
17秒前
在水一方应助hhzz采纳,获得10
17秒前
旧是完成签到 ,获得积分10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
杨小胖完成签到 ,获得积分10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
mm发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808