Machine learning models of plasma proteomic data predict mood in chronic stroke and tie it to aberrant peripheral immune responses

心情 萧条(经济学) 冲程(发动机) 心理学 临床心理学 情绪障碍 生物标志物 生物信息学 医学 精神科 焦虑 生物 工程类 经济 宏观经济学 机械工程 生物化学
作者
Neda H. Bidoki,Kristy Zera,Huda Nassar,Lauren L. Drag,Michael Mlynash,Elizabeth Osborn,Muhith Musabbir,Da Eun Kim,Maria Paula Mendez,Maarten G. Lansberg,Nima Aghaeepour,Marion S. Buckwalter
出处
期刊:Brain Behavior and Immunity [Elsevier BV]
卷期号:114: 144-153 被引量:10
标识
DOI:10.1016/j.bbi.2023.08.002
摘要

Post-stroke depression is common, long-lasting and associated with severe morbidity and death, but mechanisms are not well-understood. We used a broad proteomics panel and developed a machine learning algorithm to determine whether plasma protein data can predict mood in people with chronic stroke, and to identify proteins and pathways associated with mood. We used Olink to measure 1,196 plasma proteins in 85 participants aged 25 and older who were between 5 months and 9 years after ischemic stroke. Mood was assessed with the Stroke Impact Scale mood questionnaire (SIS3). Machine learning multivariable regression models were constructed to estimate SIS3 using proteomics data, age, and time since stroke. We also dichotomized participants into better mood (SIS3 > 63) or worse mood (SIS3 ≤ 63) and analyzed candidate proteins. Machine learning models verified that there is indeed a relationship between plasma proteomic data and mood in chronic stroke, with the most accurate prediction of mood occurring when we add age and time since stroke. At the individual protein level, no single protein or set of proteins predicts mood. But by using univariate analyses of the proteins most highly associated with mood we produced a model of chronic post-stroke depression. We utilized the fact that this list contained many proteins that are also implicated in major depression. Also, over 80% of immune proteins that correlate with mood were higher with worse mood, implicating a broadly overactive immune system in chronic post-stroke depression. Finally, we used a comprehensive literature review of major depression and acute post-stroke depression. We propose that in chronic post-stroke depression there is over-activation of the immune response that then triggers changes in serotonin activity and neuronal plasticity leading to depressed mood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助Serenity采纳,获得10
1秒前
林黛玉发布了新的文献求助10
1秒前
1秒前
叮叮当当完成签到,获得积分10
2秒前
dtjvb发布了新的文献求助10
2秒前
鱿鱼完成签到,获得积分10
2秒前
脑洞疼应助Rencal采纳,获得10
3秒前
3秒前
淡定的忆山完成签到 ,获得积分10
4秒前
4秒前
Hello应助缥缈的闭月采纳,获得30
5秒前
5秒前
DDDD源发布了新的文献求助10
5秒前
Jasper应助nron采纳,获得10
5秒前
JamesPei应助hdbys采纳,获得10
6秒前
6秒前
7秒前
绕地球3圈发布了新的文献求助10
7秒前
newman完成签到,获得积分10
7秒前
10发布了新的文献求助10
7秒前
小怪兽发布了新的文献求助10
8秒前
雾失楼台完成签到,获得积分10
8秒前
苏杉杉发布了新的文献求助10
9秒前
BINGBING发布了新的文献求助10
9秒前
可爱芷容完成签到,获得积分10
11秒前
落雁发布了新的文献求助10
11秒前
gsgg完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
热血马儿完成签到,获得积分10
13秒前
W1发布了新的文献求助10
14秒前
苹果蜗牛发布了新的文献求助10
14秒前
绕地球3圈完成签到,获得积分10
14秒前
凭栏听雨完成签到,获得积分10
14秒前
SYLH应助dtjvb采纳,获得10
14秒前
酷炫翠桃应助强扭的瓜采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650