Machine learning models of plasma proteomic data predict mood in chronic stroke and tie it to aberrant peripheral immune responses

心情 萧条(经济学) 冲程(发动机) 心理学 临床心理学 情绪障碍 生物标志物 生物信息学 医学 精神科 焦虑 生物 工程类 经济 宏观经济学 机械工程 生物化学
作者
Neda H. Bidoki,Kristy Zera,Huda Nassar,Lauren L. Drag,Michael Mlynash,Elizabeth Osborn,Muhith Musabbir,Da Eun Kim,Maria Paula Mendez,Maarten G. Lansberg,Nima Aghaeepour,Marion S. Buckwalter
出处
期刊:Brain Behavior and Immunity [Elsevier]
卷期号:114: 144-153 被引量:10
标识
DOI:10.1016/j.bbi.2023.08.002
摘要

Post-stroke depression is common, long-lasting and associated with severe morbidity and death, but mechanisms are not well-understood. We used a broad proteomics panel and developed a machine learning algorithm to determine whether plasma protein data can predict mood in people with chronic stroke, and to identify proteins and pathways associated with mood. We used Olink to measure 1,196 plasma proteins in 85 participants aged 25 and older who were between 5 months and 9 years after ischemic stroke. Mood was assessed with the Stroke Impact Scale mood questionnaire (SIS3). Machine learning multivariable regression models were constructed to estimate SIS3 using proteomics data, age, and time since stroke. We also dichotomized participants into better mood (SIS3 > 63) or worse mood (SIS3 ≤ 63) and analyzed candidate proteins. Machine learning models verified that there is indeed a relationship between plasma proteomic data and mood in chronic stroke, with the most accurate prediction of mood occurring when we add age and time since stroke. At the individual protein level, no single protein or set of proteins predicts mood. But by using univariate analyses of the proteins most highly associated with mood we produced a model of chronic post-stroke depression. We utilized the fact that this list contained many proteins that are also implicated in major depression. Also, over 80% of immune proteins that correlate with mood were higher with worse mood, implicating a broadly overactive immune system in chronic post-stroke depression. Finally, we used a comprehensive literature review of major depression and acute post-stroke depression. We propose that in chronic post-stroke depression there is over-activation of the immune response that then triggers changes in serotonin activity and neuronal plasticity leading to depressed mood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gf完成签到 ,获得积分10
3秒前
YY发布了新的文献求助10
5秒前
tmobiusx完成签到,获得积分10
6秒前
那时花开应助科研通管家采纳,获得10
6秒前
那时花开应助科研通管家采纳,获得10
6秒前
8秒前
Roy完成签到,获得积分10
8秒前
文献求助完成签到,获得积分10
9秒前
似水流年完成签到 ,获得积分10
11秒前
binshier完成签到,获得积分10
17秒前
20秒前
Eclipse12138完成签到,获得积分10
21秒前
东山寺下学习的人完成签到,获得积分10
24秒前
lx关闭了lx文献求助
27秒前
LJX完成签到 ,获得积分10
31秒前
lx完成签到,获得积分20
33秒前
成就的书包完成签到,获得积分10
38秒前
lx发布了新的文献求助630
38秒前
Celeste应助爱听歌的含烟采纳,获得10
39秒前
系小小鱼啊完成签到 ,获得积分10
41秒前
41秒前
蘅皋发布了新的文献求助10
47秒前
彭洪凯完成签到,获得积分10
48秒前
49秒前
吹梦西洲完成签到,获得积分10
52秒前
Stuki完成签到,获得积分10
52秒前
是真的完成签到 ,获得积分10
54秒前
谨慎板栗发布了新的文献求助20
56秒前
ding应助蘅皋采纳,获得10
57秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
1分钟前
文献狗完成签到,获得积分10
1分钟前
1分钟前
养猪大户完成签到 ,获得积分10
1分钟前
呆小婷儿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
federish完成签到 ,获得积分10
1分钟前
YIYI发布了新的文献求助10
1分钟前
ylky完成签到 ,获得积分10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378385
求助须知:如何正确求助?哪些是违规求助? 4502816
关于积分的说明 14014575
捐赠科研通 4411403
什么是DOI,文献DOI怎么找? 2423255
邀请新用户注册赠送积分活动 1416172
关于科研通互助平台的介绍 1393591