已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CycleMLP: A MLP-Like Architecture for Dense Visual Predictions

失败 计算机科学 人工智能 计算复杂性理论 稳健性(进化) 分割 卷积神经网络 模式识别(心理学) 变压器 算法 机器学习 并行计算 化学 电压 物理 基因 量子力学 生物化学
作者
Shoufa Chen,Enze Xie,Chongjian Ge,Runjian Chen,Ding Liang,Ping Luo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 14284-14300 被引量:30
标识
DOI:10.1109/tpami.2023.3303397
摘要

This article presents a simple yet effective multilayer perceptron (MLP) architecture, namely CycleMLP, which is a versatile neural backbone network capable of solving various tasks of dense visual predictions such as object detection, segmentation, and human pose estimation. Compared to recent advanced MLP architectures such as MLP-Mixer (Tolstikhin et al. 2021), ResMLP (Touvron et al. 2021), and gMLP (Liu et al. 2021), whose architectures are sensitive to image size and are infeasible in dense prediction tasks, CycleMLP has two appealing advantages: 1) CycleMLP can cope with various spatial sizes of images; 2) CycleMLP achieves linear computational complexity with respect to the image size by using local windows. In contrast, previous MLPs have $O(N^{2})$ computational complexity due to their full connections in space. 3) The relationship between convolution, multi-head self-attention in Transformer, and CycleMLP are discussed through an intuitive theoretical analysis. We build a family of models that can surpass state-of-the-art MLP and Transformer models e.g., Swin Transformer (Liu et al. 2021), while using fewer parameters and FLOPs. CycleMLP expands the MLP-like models’ applicability, making them versatile backbone networks that achieve competitive results on dense prediction tasks For example, CycleMLP-Tiny outperforms Swin-Tiny by 1.3% mIoU on ADE20 K dataset with fewer FLOPs. Moreover, CycleMLP also shows excellent zero-shot robustness on ImageNet-C dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
负责念梦发布了新的文献求助10
刚刚
文静的初翠完成签到,获得积分10
2秒前
大猩猩发布了新的文献求助10
2秒前
2秒前
zheng完成签到,获得积分20
3秒前
北过完成签到,获得积分10
4秒前
aa1212121完成签到,获得积分10
6秒前
陈世岗完成签到 ,获得积分10
6秒前
8秒前
11秒前
谦让黑裤完成签到,获得积分10
11秒前
Jasper应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得30
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
羞涩的听莲完成签到,获得积分20
13秒前
13秒前
14秒前
祁尒发布了新的文献求助10
15秒前
18秒前
18秒前
徐小发布了新的文献求助10
18秒前
chun发布了新的文献求助10
21秒前
一区种子选手完成签到,获得积分10
22秒前
23秒前
CipherSage应助笨笨芯采纳,获得10
23秒前
HEHNJJ给HEHNJJ的求助进行了留言
24秒前
24秒前
云猫完成签到 ,获得积分10
27秒前
风清扬应助祁尒采纳,获得10
27秒前
小二郎应助多多采纳,获得10
32秒前
超级的凝旋完成签到 ,获得积分20
32秒前
34秒前
负责念梦完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956819
求助须知:如何正确求助?哪些是违规求助? 3502880
关于积分的说明 11110559
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787644
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802172