鼻腔给药
糠酸莫米松
化学
体内
自愈水凝胶
药物输送
药理学
泊洛沙姆407
泊洛沙姆
生物利用度
药代动力学
材料科学
生物医学工程
皮质类固醇
医学
有机化学
外科
聚合物
生物技术
共聚物
生物
作者
Shrishty Bakshi,Preeti Pandey,Yousuf Mohammed,Joanna Wang,Michael J. Sailor,Amirali Popat,Harendra S. Parekh,Tushar Kumeria
标识
DOI:10.1016/j.jconrel.2023.09.045
摘要
Intranasal delivery is the most preferred route of drug administration for treatment of a range of nasal conditions including chronic rhinosinusitis (CRS), caused by an infection and inflammation of the nasal mucosa. However, localised delivery of lipophilic drugs for persistent nasal inflammation is a challenge especially with traditional topical nasal sprays. In this study, a composite thermoresponsive hydrogel is developed and tuned to obtain desired rheological and physiochemical properties suitable for intranasal administration of lipophilic drugs. The composite is comprised of drug-loaded porous silicon (pSi) particles embedded in a poloxamer 407 (P407) hydrogel matrix. Mometasone Furoate (MF), a lipophilic corticosteroid (log P of 4.11), is used as the drug, which is loaded onto pSi particles at a loading capacity of 28 wt%. The MF-loaded pSi particles (MF@pSi) are incorporated into the P407-based thermoresponsive hydrogel (HG) matrix to form the composite hydrogel (MF@pSi-HG) with a final drug content ranging between 0.1 wt% to 0.5 wt%. Rheomechanical studies indicate that the MF@pSi component exerts a minimal impact on gelation temperature or strength of the hydrogel host. The in-vitro release of the MF payload from MF@pSi-HG shows a pronounced increase in the amount of drug released over 8 h (4.5 to 21-fold) in comparison to controls consisting of pure MF incorporated in hydrogel (MF@HG), indicating an improvement in kinetic solubility of MF upon loading into pSi. Ex-vivo toxicity studies conducted on human nasal mucosal tissue show no adverse effect from exposure to either pure HG or the MF@pSi-HG formulation, even at the highest drug content of 0.5 wt%. Experiments on human nasal mucosal tissue show the MF@pSi-HG formulation deposits a quantity of MF into the tissues within 8 h that is >19 times greater than the MF@HG control (194 ± 7 μg of MF/g of tissue vs. <10 μg of MF/g of tissue, respectively).
科研通智能强力驱动
Strongly Powered by AbleSci AI